首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 10-fold concentrated spent MRS culture cell-free supernatant concentrate [(cCFS)] of the human female genitourinary tract isolate Lactobacillus gasseri ATCC 9857 was shown to exhibit antibacterial activity towards gram-positive sporogenous and asporogenous fermentative eubacteria in liquid and on solid media under conditions that eliminated the activity of lactic acid (-glycerophosphate) and hydrogen peroxide (catalase). The antibacterial activity of the cCFS was characterized by automated turbidometry (Bioscreen) and non-linear regression analysis (Gompertz model) using MRS broth cultures of the indicator strain L. acidophilus ATCC 11975. It exhibited a bactericidal mode of action, sensitivity to trypsin and proteinase K, partial sensitivity to pepsin and pronase E, partial heat stability at 121 °C for 15 min, and retained significantly more activity following exposure to pH 3.0 and 5.0 compared with pH 7.2 and 9.0. The inhibitory spectrum included a wide range of Lactobacillus species, Bifidobacterium bifidum, B. infantis and B. catenulatum, Lactococcus cremoris, Leuconostoc cremoris, Pediococcus pentosaceus, Bacillus cereus, Clostridium tyrobutyricum, C. pasteurianum, C. sporogenes, Staphylococcus carnosus, and Enterococcus faecalis. Although partial inhibition of Escherichia coli ATCC 25922 by cCFS was observed in liquid medium, inhibition of freshly isolated human uropathogenic E. coli strains could not be demonstrated on TSB agar plates by agar well diffusion. Following partial resolution by gel permeation FPLC on Superose-12, the fractionated cCFS was shown to comprise at least two inhibitory peptides (3.05 and 5.27 kDa) as well as aggregated inhibitory peptide material (21.65, 41.50, 81.20, and 120.90 kDa). The 3.05 kDa peptide, designated Gassericin D, inhibited L. acidophilus strains ATCC 11975 and ACA-DC 241. The 5.27 kDa peptide, designated Gassericin C, inhibited L. gasseri strain UCSC LF221Snb and En. faecalis DPC 3319. The aggregated 21.65 kDa peptide material strongly inhibited L. acidophilus ATCC 11975 and weakly inhibited Listeria inocua DPC 3306. The aggregated 41.50 kDa peptide material strongly inhibited Ba. cereus DPC 3316 and weakly inhibited L. acidophilus ACA-DC 241. The ability of L. gasseri ATCC 9857 to produce bacteriocin-like activity may be of importance in the biopreservation of nutraceuticals and in the management of female genitourinary and gastrointestinal tract infections involving En. faecalis.  相似文献   

2.
Forty-nine strains of the gliding prokaryote Simonsiella were isolated from the oral cavities of cats (8), dogs (19), sheep (4), and humans (18) in Southern California by a direct isolation procedure using a complex serum-enriched medium. The numerical taxonomic analysis (unweighted pair-group method using arithmetic averages) of 57 differential traits for each strain was based on standard bacteriological diagnostic tests and included the molar guanine-pluscytosine contents of the DNA and the relative percentages of fatty acid contents reported earlier. The resulting phenogram clustered the strains of Simonsiella into groups that correlated with sources of origin. The study included the neotype strain of Simonsiella crassa (ATCC 27504, ICPB 3651, NCTC 10283) of Australian sheep origin. The strains isolated from dogs, sheep, and humans form clusters of organisms that appear to have become adapted to live in and possibly to have evolved with their respective hosts. In our judgment, these source-of-origin clusters represent different ecospecies.List of Abbreviations ATCC American Type Culture Collection - BSTSY bovine serum-tryptic soy-yeast extract - DNA deoxyribonucleic acid - ECL equivalent chain length of carbon atoms - ICPB International Collection of Phytopathogenic Bacteria - NCTC National Collection of Type Cultures To whom offprint requests should be sent.  相似文献   

3.
Several compounds were tested for their ability to inhibit the in-vivo synthesis of cellulose and other cell-wall polysaccharides in fibers of cotton (Gossypium hirsutum L.) developing on in-vitro cultured ovules. Inhibitory effects were measured by the ability of the compounds to inhibit the incorporation of radioactivity from [U-14C]glucose into these cell-wall polymers. Of the compounds surveyed, 2,6-dichlorobenzonitrile (DCB) was the most effective and specific one for its effects on cellulose synthesis when compared to its effect on the synthesis of other cell-wall components. At 10 M DCB caused 80% inhibition of cellulose synthesis, and the effect was reversed upon removal of the DCB, with recovery to 90% of the control rate. Two analogs of DCB, 2-chloro-6-fluorobenzonitrile and 2,6-dichlorobenzene carbothiamide, were as specific and nearly as effective as DCB with respect to their effects on cellulose synthesis. Coumarin, generally regarded as an inhibitor of cellulose synthesis in other plant systems, was effective in cotton fibers in millimolar concentrations and, like DCB, was relatively specific with regard to its effect on cellulose synthesis. DCB and coumarin inhibited the synthesis of both primary and secondary wall cellulose. Bacitracin, an inhibitor of the cycling of phosphorylated polyprenols involved in cell-wall synthesis in bacteria, and ethylenediaminetetracetic acid (EDTA) and ethyleneglycol-bis-(-amino-ethylether)-N,N-tetracetic acid (EGTA), chelators of civalent cations, were also effective, although only at relatively high concentrations, in inhibiting incorporation of radioactivity into cellulose.Abbreviations DCB 2,6-dichlorobenzonitrite - CFB 2-chloro-6-fluorobenzonitrile - EDTA ethylenediaminetetracetic acid - EGTA ethyleneglycol-bis-(-amino-ethylether)-N,N-tetracetic acid  相似文献   

4.
A number of plants were tested for their ability to bind ethylene and the number of binding sites present in each was calculated. Primary leaves of laboratory-grown beans (Phaseolus vulgaris) bound 140 dpm/g fwt (1794 dpm/g dry wt) when exposed to 1.0 Ci/1 of [14C]ethylene (110 ci/mol). Phytotron-grown leaves were less succulent but only bound 90 dpm/g fwt (1046 dpm/g dry wt). Bean roots bound 30 dpm/g fwt. Citrus and Ligustrum bound 207 and 240 dpm/g fwt, respectively. The time required to achieve equilibrium of leaves with the gas phase was 15 min for bean, 30 min for Citrus, and 30–60 min for Ligustrum. The time for 1/2 of the bound ethylene to diffuse out of the leaves was 20 min for bean, 10 min for Citrus, and 30 min for Ligustrum. The amount of ethylene needed to occupy 1/2 of the binding sites was obtained from Scatchard plots. This value (Kd) was 0.2 l/1 for bean, 0.15 for Citrus, and 0.31 for Ligustrum. The quantity of binding sites in the tissues was 2.0×10-9 mol of binding sites/kg tissue for bean leaves, 5.7×10-9 for Citrus leaves, and 6.8×10-9 for Ligustrum. Pretreatment with indoleacetic acid (IAA), ehtylene, and cycloheximide (1 mg/1) had little effect on the level of ethylene-binding sites in Citrus.Contribution from the Department of Biochemistry, School of Agriculture and Life Sciences and School of Physical and Mathematical Sciences, North Carolina State University. Paper No. 8445 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7601.North Carolina-Israel exchange Scholar for 1981 at the Department of Biochemistry, North Carolina State University Raleigh, North Carolina, USA  相似文献   

5.
The ability of Streptomyces sp. OXCI, S. rimosus NRRL B2659, S. rimosus NRRL B2234, S. alboflavus NRRL B1273 S. aureofaciens NRRL B2183 and S. vendagensis ATCC 25507 to produce tetracycline using some local agricultural wastes as solid state media, were assessed. The wastes employed include peanut (groundnut) shells, corncob, corn pomace and cassava peels. Bacillus subtilis ATCC 6633 was used to assay antimicrobial activity. All the strains produced tetracycline in a solid-state fermentation process containing peanut (groundnut) as the carbohydrate source. Streptomyces sp. OXC1 had the highest ability for tetracycline production with peanut shells as the substrate in solid fermentation (13.18 mg/g), followed by S. vendagensis ATCC 25507 (11.08 mg/g), S.rimosus NRRL B1679 (8.46 mg/g), S. alboflavus NRRL B1273 (7.59 mg/g), S. rimosus NRRL B2234 (6.37 mg/g), S. aureofaciens NRRL B2183 (4.27 mg/g). Peanut (groundnut) shells were the most effective substrate (4.36 mg/g) followed by corncob (2.64 mg/g), cassava peels (2.16 mg/g) and corn pomace (1.99 mg/g). The composition of the peanut (groundnut) shell medium optimal for tetracycline production were peanut shells 100 g, organic nitrogen (peanut meal) 10 g, (NH 4)2 SO4 1 g, KH2 PO 4 0.5 g, CaCO3 > 0.5 g, NaCl 0.5 g, MgSO4 · 7H2 O 0.5 g, soluble starch 10 g, peanut oil 0.25 ml with initial moisture content of 65–68%, and initial pH 5.3–6.3. Substrate (1 g dry weight) was inoculated with 1.0 × 10 8 conidia per ml and incubated at 28–31 °C for 5–7 days, producing 13.18 mg/g of total tetracycline. Tetracycline detection started on day 3 and attained its maximum level on day 5.  相似文献   

6.
Lipopolysaccharides (LPS), isolated from four Mycoplana species, i.e. the type strains of M. bullata, M. segnis, M. ramosa and M. dimorpha, were characterized onto their chemical composition and their respective lipid A-types. Those of M. bullata and M. segnis showed on DOC-PAGE an R-type character and had lipid A's of the Lipid ADAG-type which exclusively contained 2,3-diamino-2,3-dideoxy-d-glucose as lipid A sugar. LPS's of M. ramosa and M. dimorpha showed, although only weakly expressed, ladder-like patterns on DOC-PAGE indicating some S-type LPS's and lipid A of the d-glucosamine type (Lipid AGlcN). M. bullata LPS contained mannose and glucose in major amounts and additionally l-glycero-d-mannoheptose, whereas M. segnis LPS was composed of rhamnose, mannose and glucose together with both, d-glycero-d-manno- and l-glycero-d-manno-heptoses in a molar ratio of 1:2. All LPS's contained 2-keto-3-deoxy-octonic acid (Kdo), phosphate and an unidentified acidic component X. In addition to X, M. segnis LPS contained glucuronic and galacturonic acids, whereas M. ramosa LPS contained only galacturonic acid. Acetic acid hydrolysis of the LPS resulted in splitting off lipid A moieties, very rich in 3-hydroxy fatty acids, in particular in 3-OH-12:0 (in Lipid ADAG), or in 3-OH-14:0 (in Lipid AGlcN). Analysis of the 3-acyloxyacyl residues revealed major amounts of amide-linked 3-OH(3-OH-13:0)12:0 in lipid A of M. bullata and 3-OH(12:0)12:0 in lipid A of M. segnis. The rare 4-oxo-myristic acid (4-oxo-14:0) was observed only in M. bullata LPS, where it is ester-linked. Amide linked diesters could not be traced in M. ramosa and M. dimorpha. All four lipid A's lacked erster-bound acyloxyacyl residues.Non-standard abbreviations DAG 2,3-diamino-2,3-dideoxy-d-glucose - Kdo 2-keto-3-deoxy-octonate - LPS lipopolysaccharide - PITC phenyl isothiocyanate - NANA N-acetyl neuraminic acid  相似文献   

7.
Strain B51 capable of degrading polychlorinated biphenyls (PCB) was isolated from soil contaminated with wastes from the chemical industry. Based on its morphological and chemotaxonomic characteristics, the strain was identified as a Microbacterium sp. Experiments with washed cells showed that strain B51 is able to degrade ortho- and para-substituted mono-, di-, and trichlorinated biphenyls (MCB, DCB, and TCB, respectively). Unlike the known PCB degraders, Microbacterium sp. B51 is able to oxidize the ortho-chlorinated ring of 2,2-DCB and 2,4-DCB and the para-chlorinated ring of 4.4-DCB. The degradation of 2,4-DCB and 4,4-DCB was associated with the accumulation of 4-chlorobenzoic acid (4-CBA) in the medium in amounts comprising 80–90% of the theoretical yield. The strain was able to utilize 2-MCB, 2,2-DCB, and their intermediate 2-CBA and to oxidize the mono(ortho)-chlorinated ring of 2,4,2-TCB and the di(ortho-para)-chlorinated ring of 2,4,4-TCB. A mixed culture of Microbacterium sp. B51 and the 4-CBA-degrading bacterium Arthrobacter sp. H5 was found to grow well on 1 g/l 2,4-DCB as the sole source of carbon and energy.  相似文献   

8.
This study is focused on the fabrication and characterization of titanium oxide (TiO2) NPs. Afterwards; the interaction of TiO2 NPs with human hemoglobin (Hb) was investigated by FTIR spectroscopy, fluorescence spectroscopy, and molecular docking studies. Also, the cytotoxic effect of fabricated TiO2 NPs against human white blood cells (WBCs) was considered by MTT assay. The antibacterial effect of synthesized NPs was examined on Pseudomonas aeruginosa (ATCC 27853); Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923). TEM and DLS investigations showed that the synthesized TiO2 NPs have a narrow nano-sized distribution. XRD pattern of the fabricated NPs exhibited that the TiO2 NPs contain anatase phase. Similarity in amide I and II signal intensities showed that secondary structure of the adsorbed Hb is preserved. The intrinsic fluorescence study revealed that the fluorescence quenching of Hb was done by complex formation between Hb and TiO2 NPs trough the hydrogen bond and van der Waals interactions. Synchronous fluorescence spectroscopy determined that interaction of TiO2 NPs with Hb did not unfold the Hb structure in the vicinity of the Tyr and Trp residues. Molecular docking study depicted that Glu-95, Thr-134 and Tyr-140 are involved in the formation of hydrophilic bonds. MTT data and antibacterial assays indicated that TiO2 NPs endow distinguished antibacterial activities against Gram-negative and Gram positive strains at safe concentrations. This study may reveal that fabricated TiO2 NP can be used as a safe and potent antibacterial agent.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
Some endotoxic properties of lipopolysaccharides (LPS) and lipids A (LA) from the marine bacteria Marinomonas communis ATCC 27118T, Marinomonas mediterranea ATCC 700492T, and Chryseobacterium indoltheticum CIP 103168T were studied. The preparations tested were shown to have high 50% lethal doses (4 μg per mouse for LPS from M. mediterranea and more than 12 μg per mouse for two other LPS and LA from C. indoltheticum) and were moderate (371 ± 37 pg/ml at 10 μg/ml of C. indoltheticum LPS), weak (148 ± 5 pg/ml at 1 μg/ml of M. mediterranea LPS), and zero (LA and LPS from M. communis and LA from C. indoltheticum) inducers of tumor necrosis factor α (TNF-α) release from peripheral human blood cells. The capacity of the LA and LPS samples from marine bacteria to inhibit TNF-α release induced by LPS from Escherichia coli O55: B5 (10 ng/ml) was also studied. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 7, pp. 936–944.  相似文献   

10.
An isolate of Fusarium culmorum (W.G. Smith), Sacc. HM-8 from a scabby wheat kernel sample from England produced a novel toxin when grown in culture on rice. This toxin, which was given the trivial name of HM-8, was purified, its toxic properties demonstrated and its structure determined by spectroscopic methods. Subsequent to preliminary reports of our findings, two other laboratories have independently isolated the same substance from F. chlamydosporum and F. acuminatum, and demonstrated the same structure by spectroscopic methods and X-ray crystallography. Identity of the metabolite from F. culmorum HM-8 with the published structure is based on (1) identical elemental composition derived from both elemental analysis and high resolution mass spectrometry in electron impact and fast atom bombardment modes, (2) comparable melting point and chromatographic properties, and (3) the presence of characteristic absorption bands in the infrared, ultraviolet, and nuclear magnetic resonance (proton and carbon-13) spectra. Because both laboratories which subsequently isolated this metabolite have used the name chlamydosporol, it is being adopted here. The mass spectral properties of chlamydosporol are described. The derivative 8-O-acetylchlamydosporol was prepared and characterized. Chlamydosporol caused food refusal and weight loss in rats, cytotoxic effects to cultured mouse and human fibroblast cells at concentrations of 2.5 g/ml and 7.5 g/ml, respectively, and mortality to chick embryos (10 to 70%) over a concentration range from 0.5 mg to 4 mg per egg.  相似文献   

11.
Tertiary butyl hydroperoxide (t-BOOH) was found to be sporicidal for Bacillus megaterium ATCC19213. Sporicidal action was very temperature dependent, and the potency of t-BOOH increased about tenfold for each increase in temperature of 15 °C over the range from 30° to 70 °C. At still higher temperatures, heat and molar levels of t-BOOH were mutually potentiating for killing. Vegetative cells and germinated spores were some thousand times less resistant to t-BOOH than dormant spores. The order of resistance for spores was: Bacillus stearothermophilus ATCC7953 > Bacillus subtilis var. niger = Bacillus megaterium ATCC33729 > Bacillus megaterium ATCC19213. Killing was not enhanced by decoating and occurred without germination or loss of refractility of the spores. Spore resistance to t-BOOH was lower at more acid pH values and was decreased also by demineralization. Spores could be protected by the chelator o-phenanthroline, especially in association with Fe2+. Overall, it seemed that killing was associated with nonmetabolic formation of alkyl peroxyl radicals, which are thought to be responsible for killing of vegetative cells by organic hydroperoxides.Abbreviation A-BOOH tertiary butyl hydroperoxide  相似文献   

12.
Mutual effects between the symbiotic bacteria of entomopathogenic nematodes, Photorhabdus luminescens and Xenorhabdus poinarii, and entomopathogenic fungi were investigated in vitro. A dual culture assay on nutrient agar supplemented with bromothymol blue and triphenyltetrazolium chloride (NBTA) medium revealed that P. luminescens is antagonistic to Metarhizium anisopliae, Beauveria bassiana, B. brongniartii and Paecilomyces fumosoroseus by inhibiting their growth and conidial production; the fungal growth was not inhibited by X. poinarii. In a second laboratory experiment, crude extract produced by M. anisopliae was tested for its activity against P. luminescens and X. poinarii. Crude extract from M. anisopliae was antibacterial to P. luminescens and X. poinarii at 1000 g/ml and inhibited their growth on NBTA, but had no effect at 100 or 10 g/ml. The influence of the crude extract of M. anisopliae on the dispersal of infective juveniles (IJs) of Heterorhabditis megidis and Steinernema glaseri was assayed on Sabouraud Dextrose Agar (SDA) plates. Results showed that the crude extract of M. anisopliae had no toxic effects even at highest concentration (1000 g/ml).  相似文献   

13.
This study’s aim was to determine the identity of antibacterial compounds produced by Pseudomonas aeruginosa strain UICC B-40 and describe the antibacterial compounds’ mechanisms of action for damaging pathogenic bacteria cells. Isolation and identification of the compounds were carried out using thin layer chromatography (TLC), nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS) analyses. Antibacterial activity was assayed via minimum inhibitory concentration (MIC) and the antibacterial compound mechanism was observed morphologically through scanning electron microscopy (SEM). This study successfully identified the (2E,5E)-phenyltetradeca-2,5-dienoate antibacterial compound (molecular weight 300 g/mol), composed of a phenolic ester, fatty acid and long chain of aliphatic group structures. MIC values for this compound were determined at 62.5 μg/ml against Staphylococcus aureus strain ATCC 25923. The mechanism of the compound involved breaking down the bacterial cell walls through the lysis process. The (2E,5E)-phenyltetradeca-2,5-dienoate compound exhibited inhibitory activity on the growth of Gram-positive bacteria.  相似文献   

14.
Summary Integeneric hybridizations were carried out between Secale cereale L. (2n = 14, RR) and three Elymus species, namely, E. caninus (L.) L. (2n = 28, SSHH), E. brevipes (Keng) Löve (2n = 28, SSYY) and E. tsukushiensis Honda (2n = 42, SSHHYY). Chromosome pairing was studied at metaphase I in the parental species and the hybrids. Meiotic configurations of the hybrids were 20.74 1+0.14 II for E. caninus x S. cereale (SHR), 16.35 I+2.17 II+0.09 III for E. brevipes x S. cereale (SYR) and 25.84 I+1.10 II+0.02 III for E. tsukushiensis x S. cereale (SHYR), in addition to some secondary associations in the different hybrids. It is concluded from the study that (1) a certain, different homoeologous relationship exists among S, H and Y genomes in the investigated Elymus species; (2) low homoeology is present between genomes of Elymus (S or H or Y) and rye (R); (3) the Secale genome affects homoeologous chromosome pairing between different genomes in E. brevipes and E. tsukushiensis.  相似文献   

15.
We have recently found that the glutathione-S-transferase -isozyme (GST-), a cellular detoxification enzyme, potently and selectively inhibits activation of jun protein by its upstream kinase, jun kinase (JNK). This newly identified regulatory activity of GST- is strongly inhibited by a group of agents that inhibit its enzymatic activity. Since loss of enzymatic activity in general does not correlate with loss of regulatory activity, it is likely that inhibitor binding induces changes in the structure of one or more domains of GST that block its interaction with JNK. To identify regions of GST that change conformation on the binding of inhibitors, we have performed molecular dynamics calculations on GST- to compute its average structure in the presence and absence of the inhibitor, glutathione sulfonate. Superposition of the two average structures reveals that several regions change local structure depending upon whether the inhibitor is bound or not bound. Two of these regions, residues 36–50 and 194–201, are highly exposed. We have synthesized peptides corresponding to these two segments and find that the 194–201 sequence strongly inhibits the ability of GST- to block the in vitro phosphorylation of jun by JNK. These results suggest that this region of GST- is critical to its functioning as a newly discovered regulator of signal transduction.  相似文献   

16.
Ostrovsky  D. N.  Diomina  G. R.  Biniukov  V. I.  Shashkov  A. S.  Schloter  M. 《Microbiology》2003,72(5):528-533
A mercury resistant-soil bacterium P.10.15, identified as a close relative of Pseudomonas veronii, was shown to accumulate a specific compound in the stationary phase of growth. This compound is converted to a long-lived free radical under oxidizing conditions, as registered by its EPR signal at room temperature. The compound was purified by ion-exchange and gel-filtration chromatography and identified by mass spectroscopy, 2D NMR, and EPR as a trisaccharide -D-GlcpNOH,CH3-(16)--D-Glcp-(11)--D-Glcp, or, in other words, as 6-O-(2-deoxy-2-{N-methyl}hydroxylamino--D-glucopyranosyl)---trehalose, previously discovered in Micrococcus luteus (lysodeikticus) and named lysodektose. It is suggested that the compound is a novel intermediate of a previously unknown basic metabolic pathway of trehalose transformation in bacteria, a potential target for antibacterial drug development.  相似文献   

17.
A cDNA clone, Ids3 (iron deficiency-specific clone 3), was isolated from an Fe-deficient-root cDNA library of Hordeum vulgare. Ids3 encodes a protein of 339 amino acids with a calculated molecular mass of 37.7 kDa, and its amino acid sequence shows a high degree of similarity with those of plant and fungal 2-oxoglutarate-dependent dioxygenases. One aspartate and two histidine residues for ferrous Fe binding (Asp-211, His-209, His-265) and arginine and serine residues for 2-oxoglutarate binding (Arg-275, Ser-277) are conserved in the predicted amino acid sequence of Ids3. Ids3 expression was rapidly induced by Fe deficiency, and was suppressed by re-supply of Fe. Among eight graminaceous species tested, Ids3 expression was observed only in Fe-deficient roots of H. vulgare and Secale cereale, which not only secrete 2-deoxymugineic acid (DMA), but also mugineic acid (MA) and 3-epihydroxymugineic acid (epiHMA, H. vulgare), and 3-hydroxymugineic acid (HMA, S. cereale). The Ids3 gene is encoded on the long arm of chromosome 4H of H. vulgare, which also carries the hydroxylase gene that converts DMA to MA. Moreover, the Ids2 gene, which is the plant dioxygenase with the highest homology to Ids3, is encoded on the long arm of chromosome 7H of H. vulgare, which carries the hydroxylase gene that converts MA to epiHMA. The observed expression patterns of the Ids3 and Ids2 genes strongly suggest that IDS3 is an enzyme that hydroxylates the C-2 positions of DMA and epiHDMA, while IDS2 hydroxylates the C-3 positions of MA and DMA.  相似文献   

18.
Myoglobin was isolated from the radular muscle of the archaeogastropod mollusc Turbo cornutus (Turbinidae). This myoglobin is a monomer carrying one protoheme group; the molecular mass was estimated by SDS–PAGE to be about 40 kDa, 2.5 times larger than that of usual myoglobin. The cDNA-derived amino acid sequence of 375 residues was determined, of which 327 residues were identified directly by chemical sequencing of internal peptides. The amino acid sequence of Turbo myoglobin showed no significant homology with any other usual 16-kDa globins, but showed 36% identity with the myoglobin from Sulculus diversicolor (Haliotiidae) and 27% identity with human indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme containing heme. Thus, the Turbo myoglobin can be counted among the myoglobins which evolved from the same ancestor as that of indoleamine 2,3-dioxygenase. The absorbance ratio of to CT maximum (/CT) of Turbo metmyoglobin was 17.8, indicating that this myoglobin probably possesses a histidine residue near the sixth coordination position of heme iron. The Turbo myoglobin binds oxygen reversibly. Its oxygen equilibrium properties are similar to those of Sulculus myoglobin, giving P 50 = 3.5 mm Hg at pH 7.4 and 20°C. The pH dependence of autoxidation of Turbo oxymyoglobin was quite different from that of mammalian myoglobin, suggesting a unique protein folding around the heme cavity of Turbo myoglobin. A kinetic analysis of autoxidation indicates that the amino acid residue with pK a = 5.4 is involved in the reaction. The autoxidation reaction was enhanced markedly at pH 7.6, but not at pH 5.5 and 6.3 in the presence of tryptophan. We suggest that a noncatalytic binding site for tryptophan, in which several dissociation groups with pK a 7.6 are involved, remains in Turbo myoglobin as a relic of molecular evolution.  相似文献   

19.
Enteropeptidase (enterokinase, EC 3.4.21.9) hydrolyzes peptide bonds formed by carboxyl groups of Lys or Arg residue if less than four negatively charged amino acid residues are in positions P 2P 5 of its substrate. We determined the kinetic parameters of three substrates of this type: human angiotensin II (AT) (DR VYIHPF) and the Hb(2–8) (LTAEEK A) and Hb(1–9) (MLTAEEK AA) peptides of the cattle hemoglobin -chain. The K m values for all the substrates (10–3 M) were one order of magnitude higher than those of the typical synthetic substrates of enteropeptidase or chimeric proteins with the –DDDDK– full-size linker (K m 10–4 M). The k cat values for AT and Hb(2–8) were also close and low (30 min–1). The general hydrolysis efficiency of such substrates is no more than 1% of the corresponding value for the typical peptide and protein substrates of the enteropeptidase. However, the elongation of Hb(2–8) peptide by one amino acid residue from both its N- and C-termini results in a dramatic increase in the catalytic efficiency of the hydrolysis: the k cat value for Hb(1–9) is 1510 min–1, which means that it is hydrolyzed only three times less effective than the chimeric protein with the full-size linker.  相似文献   

20.
    
We have used gel mobility shift assays to scan 1.7 kb of 5 non-coding sequence of the am (glutamate dehydrogenase) gene of Neurospora crassa for binding by partially fractionated Neurospora proteins. Using genetic analysis this region had been shown to play an important role in the control of glutamate dehydrogenase (GDH) expression. Gel mobility shift analysis identified three regions to which Neurospora proteins bind specifically. Two of these corresponded to the two elements previously defined by genetic analysis (URSam and URSam). The third protein binding site appears to be unrelated to am gene expression. Competition experiments showed that the proteins that bind to the URSam and URSam elements are different. The URSam element was shown to contain two independent binding sites for the URSam binding protein(s). Both fragments contain a CCAAT motif, suggesting that URSam binding protein(s) may be members of one of the CCAAT-binding protein families. The effect of deletion of either the URSam or URSam elements on catabolite induction of am expression was also determined. Both elements appear to act as constitutive enhancers of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号