首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In recent years, there has been growing concern about how species invasions and extinctions could change the distinctiveness of formerly disparate fauna and flora, a process called biotic homogenization. In the present study, a null model of biotic of homogenization was developed and applied to the European freshwater fish fauna. We found that non-native fish species led to the greatest homogenization in south-western Europe and greatest differentiation in north-eastern Europe. Comparing these observed patterns to those expected by our null model empirically demonstrated that biotic homogenization is a non-random ecological pattern, providing evidence for previous assumptions. The place of origin of non-native species was also considered by distinguishing between exotic (originating from outside Europe) and translocated species (originating from within Europe). We showed that exotic and translocated species generated distinct geographical patterns of biotic homogenization across Europe because of their contrasting effects on the changes in community similarity among river basins. Translocated species promoted homogenization among basins, whereas exotic species tended to decrease their compositional similarity. Quantifying the individual effect of exotic and translocated species is therefore an absolute prerequisite to accurately assess the spatial dynamics of biotic homogenization.  相似文献   

2.
Aim We investigated the biogeographical patterns of phytoplankton, zooplankton and fish in freshwater ecosystems. We tested whether spatial distance or environmental heterogeneity act as potential factors controlling community composition. Location Northern and central Greece, eastern Mediterranean. Method Data on 310 phytoplankton, 72 zooplankton and 37 fish species were collected from seven freshwater systems. Species occurrence data were used to generate similarity matrices describing community composition. We performed Mantel tests to compare spatial patterns in community composition of phytoplankton, zooplankton and fish. Next, we examined the correlation between geographical distance and the degree of similarity in community composition. The analysis was repeated for different taxonomic, trophic and size‐based groups of the microorganisms studied. We assessed different environmental variables (topographic and limnological) as predictors of community composition. Results Phytoplankton community composition showed a strong positive correlation with environmental heterogeneity but was not correlated with the geographical distance between systems. Zooplankton community composition was unrelated to geographical distance and was only weakly correlated with environmental variables. In contrast, fish community similarity decayed significantly with distance. We found no relationship along all pairwise comparisons of the compositional matrices of the three groups. The pairwise comparisons of the different taxonomic, trophic and size‐based groups of the microorganism communities studied were in accordance with the results for the entire microorganism community. Main conclusions Our results support the proposition that the biogeography of microorganisms does not demonstrate a distance–decay pattern and further suggest that, in reality, the drivers of distribution depend on the specific community examined. In contrast, the biogeography of macroorganisms was affected by geographical distance. These differences reflect the dispersal abilities of the different organisms. The microorganisms exhibit passive dispersal through the air, with local environmental conditions structuring their community composition. On the other hand, for macroorganisms such as fish, the terrestrial environment could pose barriers to their dispersal; with fish structuring distinctive communities over greater distances. Overall, we suggest that the biogeography of freshwater phytoplankton and zooplankton reflects contemporary environmental conditions, while the biogeographical patterns for fish inhabiting the same systems are related to factors affecting their dispersal ability.  相似文献   

3.
Quantifying the role of spatial patterns is an important goal in ecology to further understand patterns of community composition. We quantified the relative role of environmental conditions and regional spatial patterns that could be produced by environmental filtering and dispersal limitation on fish community composition for thousands of lakes. A database was assembled on fish community composition, lake morphology, water quality, climatic conditions, and hydrological connectivity for 9885 lakes in Ontario, Canada. We utilized a variation partitioning approach in conjunction with Moran's Eigenvector Maps (MEM) and Asymmetric Eigenvector Maps (AEM) to model spatial patterns that could be produced by human‐mediated and natural modes of dispersal. Across 9885 lakes and 100 fish species, environmental factors and spatial structure explained approximately 19% of the variation in fish community composition. Examining the proportional role of spatial structure and environmental conditions revealed that as much as 90% of the explained variation in native species assemblage composition is governed by environmental conditions. Conversely on average, 67% of the explained variation in non‐native assemblage composition can be related to human‐mediated dispersal. This study highlights the importance of including spatial structure and environmental conditions when explaining patterns of community composition to better discriminate between the ecological processes that underlie biogeographical patterns of communities composed of native and non‐native fish species.  相似文献   

4.
Aim We tested whether coarse‐grained occurrence data can be used to detect climatic niche shifts between native and non‐native ranges for a set of widely introduced freshwater fishes. Location World‐wide. Methods We used a global database of freshwater fish occurrences at the river basin scale to identify native and non‐native ranges for 18 of the most widely introduced fish species. We also examined climatic conditions within each river basin using fine‐grained climate data. We combined this information to test whether climatic niche shifts have occurred between native and non‐native ranges. We defined climatic niche shifts as instances where the ranges of a climatic variable within native and non‐native basins exhibit zero overlap. Results We detected at least one climatic niche shift for each of the 18 studied species. However, we did not detect common patterns in the thermal preference or biogeographic origin of the non‐native fish, hence suggesting a species‐specific response. Main conclusions Coarse‐grained occurrence data can be used to detect climatic niche shifts. They also enable the identification of the species experiencing niche shifts, although the mechanisms responsible for these shifts (e.g. local adaptation, dispersal limitation or physiological constraints) have yet to be determined. Furthermore, the coarse‐grained approach, which highlights regions where climatic niche shifts have occurred, can be used to select specific river basins for more detailed, fine‐grained studies.  相似文献   

5.
The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo‐drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo‐connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo‐disconnected basins. Palaeo‐connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo‐river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo‐connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.  相似文献   

6.
Aim To examine the role of multiple landscape factors on the species richness patterns of native and introduced freshwater fish. Location Mediterranean streams, south‐western Iberian Peninsula, Europe (c. 87,000 km2). Methods We used a dataset of fish occurrences from 436 stream sites. We quantified the incremental explanatory power of multiple landscape factors in native, introduced, and overall local species richness using regression analysis. First, we related variation in local species richness across river basins to regional species richness (here, the basin species pool), area and factors of climate and topography. Second, we related within‐river basin local species richness to site’s climate and topography, and spatial structure derived from Principal Coordinates of Neighbour Matrices approach, after testing for species richness spatial autocorrelation; predicted local richness was mapped. Results Patterns of local species richness across river basins were strongly associated with regional species richness for overall, native and introduced species; annual rainfall showed a significant incremental contribution to variation in introduced species richness only. Within river basins, environmental factors were associated with local richness for the three species groups, though their contributions to the total explained variation were inferior to those of spatial factors; rainfall seasonality and stream slope were the most consistent environmental correlates for all species groups, while the influence of spatial factors was most prevalent for native species. Main conclusions Landscape factors operating among and within river basins seem to play a relevant role in shaping local species richness of both native and introduced species, and may be contingent on basin‐specific contexts. Nevertheless, local factors, such as habitat characteristics and biotic interactions and human‐induced disturbances may also be at play. Multiscale approaches incorporating a multitude of factors are strongly encouraged to facilitate a deeper understanding of the biodiversity patterns of Mediterranean streams, and to promote more effective conservation and management strategies.  相似文献   

7.
Abstract Aim The extensively published data on Southeast‐East Asian freshwater fish communities and distributions were compiled and expressed into phenograms. Location River basins of Southeast China, the Indochinese Peninsula and Sundaland were studied and compared for possible lineages. Methods The Hennig86 program was employed to cluster the basins of the various subregions on the basis of their similarity in fish assemblages. In this cluster analysis, the outgroup comparison method was used, in which a reference was based on which to make corrections for unequal rates of evolution among the lineages. Results South‐eastern China, the Indochinese Peninsula and Sundaland are groups of landmass that share a common ancestor and that evolved at distinct epochs and through different geological processes, as shown from the association between the distribution of freshwater fish of Southeast‐East Asia and the twenty‐one river basins they inhabit. Main conclusions Southeast‐East Asia comprises an estimated 3500 cyprinid species. The phenograms obtained, based on their compositional and distributional patterns, suggest that the riverine fish communities of the area studied fall into nineteen biogeographical zones defined by the main river systems and their underlying geology.  相似文献   

8.
Aim It is a central issue in ecology and biogeography to understand what governs community assembly and the maintenance of biodiversity in tropical rain forest ecosystems. A key question is the relative importance of environmental species sorting (niche assembly) and dispersal limitation (dispersal assembly), which we investigate using a large dataset from diverse palm communities. Location Lowland rain forest, western Amazon River Basin, Peru. Methods We inventoried palm communities, registering all palm individuals and recording environmental conditions in 149 transects of 5 m × 500 m. We used ordination, Mantel tests and indicator species analysis (ISA) to assess compositional patterns, species responses to geographical location and environmental factors. Mantel tests were used to assess the relative importance of geographical distance (as a proxy for dispersal limitation) and environmental differences as possible drivers of dissimilarity in palm species composition. We repeated the Mantel tests for subsets of species that differ in traits of likely importance for habitat specialization and dispersal (height and range size). Results We found a strong relationship between compositional dissimilarity and environmental distance and a weaker but also significant relationship between compositional dissimilarity and geographical distance. Consistent with expectations, relationships with environmental and geographical distance were stronger for understorey species than for canopy species. Geographical distance had a higher correlation with compositional dissimilarity for small‐ranged species compared with large‐ranged species, whereas the opposite was true for environmental distance. The main environmental correlates were inundation and soil nutrient levels. Main conclusions The assembly of palm communities in the western Amazon appears to be driven primarily by species sorting according to hydrology and soil, but with dispersal limitation also playing an important role. The importance of environmental characteristics and geographical distance varies depending on plant height and geographical range size in agreement with functional predictions, increasing our confidence in the inferred assembly mechanisms.  相似文献   

9.
Disease‐mediated threats posed by exotic species to native counterparts are not limited to introduced parasites alone, since exotic hosts frequently acquire native parasites with possible consequences for infection patterns in native hosts. Several biological and geographical factors are thought to explain both the richness of parasites in native hosts, and the invasion success of free‐living exotic species. However, the determinants of native parasite acquisition by exotic hosts remain unknown. Here, we investigated native parasite communities of exotic freshwater fish to determine which traits influence acquisition of native parasites by exotic hosts. Model selection suggested that five factors (total body length, time since introduction, phylogenetic relatedness to the native fish fauna, trophic level and native fish species richness) may be linked to native parasite acquisition by exotic fish, but 95% confidence intervals of coefficient estimates indicated these explained little of the variance in parasite richness. Based on R2‐values, weak positive relationships may exist only between the number of parasites acquired and either host size or time since introduction. Whilst our results suggest that factors influencing parasite richness in native host communities may be less important for exotic species, it seems that analyses of general ecological factors currently fail to adequately incorporate the physiological and immunological complexity of whether a given animal species will become a host for a new parasite.  相似文献   

10.
11.
12.
Niche and neutral processes drive community assembly and metacommunity dynamics, but their relative importance might vary with the spatial scale. The contribution of niche processes is generally expected to increase with increasing spatial extent at a higher rate than that of neutral processes. However, the extent to what community composition is limited by dispersal (usually considered a neutral process) over increasing spatial scales might depend on the dispersal capacity of composing species. To investigate the mechanisms underlying the distribution and diversity of species known to have great powers of dispersal (hundreds of kilometres), we analysed the relative importance of niche processes and dispersal limitation in determining beta‐diversity patterns of aquatic plants and cladocerans over regional (up to 300 km) and continental (up to 3300 km) scales. Both taxonomic groups were surveyed in five different European regions and presented extremely high levels of beta‐diversity, both within and among regions. High beta‐diversity was primarily explained by species replacement (turnover) rather than differences in species richness (i.e. nestedness). Abiotic and biotic variables were the main drivers of community composition. Within some regions, small‐scale connectivity and the spatial configuration of sampled communities explained a significant, though smaller, fraction of compositional variation, particularly for aquatic plants. At continental scale (among regions), a significant fraction of compositional variation was explained by a combination of spatial effects (exclusive contribution of regions) and regionally‐structured environmental variables. Our results suggest that, although dispersal limitation might affect species composition in some regions, aquatic plant and cladoceran communities are not generally limited by dispersal at the regional scale (up to 300 km). Species sorting mediated by environmental variation might explain the high species turnover of aquatic plants and cladocerans at regional scale, while biogeographic processes enhanced by dispersal limitation among regions might determine the composition of regional biotas.  相似文献   

13.
Aim To investigate how species richness and similarity of non‐native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non‐native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41–84 sites along elevational gradients using 100‐m2 plots located 0, 25 and 75 m from roadsides. We used mixed‐effects models to examine how local variation in species richness and similarity were affected by processes at three scales: among regions (global), along elevational gradients (regional) and with distance from the road (local). We used model selection and information criteria to choose best‐fit models of species richness along elevational gradients. We performed a hierarchical clustering of similarity to investigate human‐related factors and environmental filtering as potential drivers at the global scale. Results Species richness and similarity of non‐native plant species along elevational gradients were strongly influenced by factors operating at scales ranging from 100 m to 1000s of km. Non‐native species richness was highest in the New World regions, reflecting the effects of colonization from Europe. Similarity among regions was low and due mainly to certain Eurasian species, mostly native to temperate Europe, occurring in all New World regions. Elevation and distance from the road explained little of the variation in similarity. The elevational distribution of non‐native species richness varied, but was always greatest in the lower third of the range. In all regions, non‐native species richness declined away from roadsides. In three regions, this decline was steeper at higher elevations, and there was an interaction between distance and elevation. Main conclusions Because non‐native plant species are affected by processes operating at global, regional and local scales, a multi‐scale perspective is needed to understand their patterns of distribution. The processes involved include global dispersal, filtering along elevational gradients and differential establishment with distance from roadsides.  相似文献   

14.
Questions: Can patterns of species similarity on ditch banks be explained by environmental and dispersal factors and, if so, to what extent? Does the pattern of distance decay differ among different species groups (all species versus target species of conservation interest; species of different dispersal type)? Location: Krimpenerwaard, the Netherlands. Methods: In 2006‐2007, ditch bank vegetation data on 130 terrestrial herbaceous species were collected on 72 plots. Species similarity was measured and related to environmental distance (soil type and nutrient level) and dispersal distance (geographic distance and limitation of dispersal by water, wind and agricultural activities) as explanatory factors using multiple regression on distance matrices (MRM). Differences in rates of distance decay in species similarity among different subsets of data (species groups) were investigated using randomization tests. Results: In all species, patterns of similarity of composition are influenced mainly by variations in dispersal, while for target species these are due to combined effects of environmental and dispersal variation. Compared with species using other dispersal mechanisms, water‐dispersed species had half the rate of distance decay. Conclusions: For all species considered here, dispersal limitation seems more responsible for the spatial variation in species composition than environmental determinism. Conservation management focused on plant species diversity would be more successful in areas adjacent to those where a similar management regime is already in force. For target species of conservation interest, besides dispersal limitation, environmental determinants like nutrient level are also important. As a means of conserving such target species, therefore, focusing on reducing nutrient levels and facilitating species dispersal will be more effective than current management practices, which mainly focus on reducing fertilizer inputs.  相似文献   

15.
Biodiversity encompasses multiple facets, among which taxonomic, functional and phylogenetic aspects are the most often considered. Understanding how those diversity facets are distributed and what are their determinants has become a central concern in the current context of biodiversity crisis, but such multi‐faceted measures over large geographical areas are still pending. Here, we measured the congruence between the biogeographical patterns of freshwater fish morphological, ecological and phylogenetic diversity across Europe and identified the natural and anthropogenic drivers shaping those patterns. Based on freshwater fish occurrence records in 290 European river catchments, we computed richness and evenness for morphological, ecological and phylogenetic diversity using standardized effect sizes for each diversity index. We then used linear models including climatic, geo‐morphological, biotic and human‐related factors to determine the key drivers shaping freshwater fish biodiversity patterns across Europe. We found a weak spatial congruence between facets of diversity. Patterns of diversity were mainly driven by elevation range, climatic seasonality and species richness while other factors played a minor role. Finally, we found that non‐native species introductions significantly affected diversity patterns and influenced the effects of some environmental drivers. Morphological, ecological and phylogenetic diversity constitute complementary facets of fish diversity rather than surrogates, testifying that they deserve to be considered altogether to properly assess biodiversity. Although the same environmental and anthropogenic factors overall explained those diversity facets, their relative influence varied. In the current context of global change, non‐native species introductions may also lead to important reshuffling of assemblages resulting in profound changes of diversity patterns.  相似文献   

16.
17.
Aim By dissolving natural physical barriers to movement, human‐mediated species introductions have dramatically reshuffled the present‐day biogeography of freshwater fishes. The present study investigates whether the antiquity of Australia's freshwater ichthyofauna has been altered by the widespread invasion of non‐indigenous fish species. Location Australia. Methods Using fish presence–absence data for historical and present‐day species pools, we quantified changes in faunal similarity among major Australian drainage divisions and among river basins of north‐eastern Australia according to the Sørensen index, and related these changes to major factors of catchment disturbance that significantly alter river processes. Results Human‐mediated fish introductions have increased faunal similarity among primary drainages by an average of 3.0% (from 17.1% to 20.1% similarity). Over three‐quarters of the pairwise changes in drainage similarity were positive, indicating a strong tendency for taxonomic homogenization caused primarily by the widespread introduction of Carassius auratus, Gambusia holbrooki, Oncorhynchus mykiss and Poecilia reticulata. Faunal homogenization was highest in drainages subjected to the greatest degree of disturbance associated with human settlement, infrastructure and change in land use. Scenarios of future species invasions and extinctions indicate the continued homogenization of Australian drainages. In contrast, highly idiosyncratic introductions of species in river basins of north‐eastern Australia have decreased fish faunal similarity by an average of 1.4%. Main conclusions We found that invasive species have significantly changed the present‐day biogeography of fish by homogenizing Australian drainages and differentiating north‐eastern river basins. Decreased faunal similarity at smaller spatial scales is a result of high historical similarity in this region and reflects the dynamic nature of the homogenization process whereby sporadic introductions of new species initially decrease faunal similarity across basins. Our study points to the importance of understanding the role of invasive species in defining patterns of present‐day biogeography and preserving the antiquity of Australia's freshwater biodiversity.  相似文献   

18.
Although habitat fragmentation fosters extinctions, it also increases the probability of speciation by promoting and maintaining divergence among isolated populations. Here we test for the effects of two isolation factors that may reduce population dispersal within river networks as potential drivers of freshwater fish speciation: 1) the position of subdrainages along the longitudinal river gradient, and 2) the level of fragmentation within subdrainages caused by natural waterfalls. The occurrence of native freshwater fish species from 26 subdrainages of the Orinoco drainage basin (South America) was used to identify those species that presumably arose from in‐situ cladogenetic speciation (i.e. neo‐endemic species; two or more endemic species from the same genus) within each subdrainage. We related subdrainages fish diversity (i.e. total, endemic and neo‐endemic species richness) and an index of speciation to our two isolation factors while controlling for subdrainages size and energy availability. The longitudinal position of subdrainages was unrelated to any of our diversity measures, a result potentially explained by the spatial grain we used and/or the contemporary connection between Orinoco and Amazon basins via the upstream Casiquiare region. However, we found higher neo‐endemic species richness and higher speciation index values in highly fragmented subdrainages. These results suggest that habitat fragmentation generated by natural waterfalls drives cladogenetic speciation in fragmented subdrainages. More generally, our results emphasize the role of history and natural waterfalls as biogeographic barriers promoting freshwater biodiversity in river drainage basins.  相似文献   

19.
Aim The question of how much of the shared geographical distribution of biota is due to environmental vs. historical constraints remains unanswered. The aim of this paper is to disentangle the contribution of historical vs. contemporary factors to the distribution of freshwater fish species. In addition, it illustrates how quantifying the contribution of each type of factor improves the classification of biogeographical provinces. Location Iberian Peninsula, south‐western Europe (c. 581,000 km2). Methods We used the most comprehensive data on native fish distributions for the Iberian Peninsula, compiled from Portuguese and Spanish sources on a 20‐km grid‐cell resolution. Overall, 58 species were analysed after being categorized into three groups according to their ability to disperse through saltwater: (1) species strictly intolerant of saltwater (primary species); (2) species partially tolerant of saltwater, making limited incursions into saltwaters (secondary species); and (3) saltwater‐tolerant species that migrate back and forth from sea to freshwaters or have invaded freshwaters recently (peripheral species). Distance‐based multivariate analyses were used to test the role of historical (basin formation) vs. contemporary environmental (climate) conditions in explaining current patterns of native fish assemblage composition. Cluster analyses were performed to explore species co‐occurrence patterns and redefine biogeographical provinces based on the distributions of fishes. Results River basin boundaries were better at segregating species composition for all species groups than contemporary climate variables. This historical signal was especially evident for primary and secondary freshwater fishes. Eleven biogeographical provinces were delineated. Basins flowing to the Atlantic Ocean north of the Tagus Basin and those flowing to the Mediterranean Sea north of the Mijares Basin were the most dissimilar group. Primary and secondary freshwater species had higher province fidelity than peripheral species. Main conclusions The results support the hypothesis that historical factors exert greater constraints on native freshwater fish assemblages in the Iberian Peninsula than do current environmental factors. After examining patterns of assemblage variation across space, as evidenced by the biogeographical provinces, we discuss the likely dispersal and speciation events that underlie these patterns.  相似文献   

20.
Little is known about the combined impact of habitat filtering and dispersal limitation on species turnover patterns. To gain new insights, we constructed a spatially explicit community model wherein we controlled dispersal distances, the strength of habitat filtering, and the grain of habitat heterogeneity to study the distance decay of several (dis)similarity indices. The impact of habitat filtering is dependent on the ratio between the grain of habitats and the mean dispersal distance. The behavior of (dis)similarity indices varies. First, incidence-based measures of species overlap are less affected by habitat filtering than are abundance-based indices. Second, species identity-based indices, derived from population genetics' F(ST), show interesting capacities to infer dispersal processes under neutrality but are also highly sensitive to habitat filtering. All indices except F(ST)-related indices under neutrality are very sensitive to overall species richness. Hence, community patterns showing contrasted diversity levels should be compared with caution. Partitioning similarity indices within and between habitats appears to be an efficient approach to assess the strength of habitat filtering, and we show that a torus-translation test is powerful for this purpose. We finally highlight the need for further analytical studies to achieve theoretical expectations of similarity decay under dispersal and niche processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号