首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
A radioimmunoassay for ornithine decarboxylase was used to study the regulation of this enzyme in rat liver. The antiserum used reacts with ornithine decarboxylase from mouse, human or rat cells. Rat liver ornithine decarboxylase enzyme activity and enzyme protein (as determined by radioimmunoassay) were measured in thioacetamide-treated rats at various times after administration of 1,3-diaminopropane. Enzyme activity declined rapidly after 1,3-diaminopropane treatment as did the amount of enzyme protein, although the disappearance of enzyme activity slightly preceded the loss of immunoreactive protein. The loss of enzyme protein after cycloheximide treatment also occurred rapidly, but was significantly slower than that seen with 1,3-diaminopropane. When 1,3-diaminopropane and cycloheximide were injected simultaneously, the rate of disappearance of enzyme activity and enzyme protein was the same as that seen with cycloheximide alone. These results show that the rapid loss in enzyme activity after 1,3-diaminopropane treatment is primarily due to a loss in enzyme protein and that protein synthesis is needed in order for 1,3-diaminopropane to exert its full effect. A macromolecular inhibitor of ornithine decarboxylase that has been termed antizyme is induced in response to 1,3-diaminopropane, but our results indicate that the loss of enzyme activity is not due to the accumulation of inactive ornithine decarboxylase-antizyme complexes. It is possible that the antizyme enhances the degradation of the enzyme protein. Control experiments demonstrated that the antiserum used would have detected any inactive antizyme-ornithine decarboxylase complexes present in liver since addition of antizyme to ornithine decarboxylase in vitro did not affect the amount of ornithine decarboxylase detected in our radioimmunoassay. Anti-(ornithine decarboxylase) antibodies may be useful in the purification of antizyme since the antizyme-ornithine decarboxylase complex can be immunoprecipitated, and antizyme released from the precipitate with 0.3 M-NaCl.  相似文献   

2.
Ornithine decarboxylase was present in a cryptic, complexed form in an amount approximately equivalent to that of free ornithine decarboxylase activity in adult rat heart. Addition of isoproterenol (10 mg/kg) caused a notable rise in ornithine decarboxylase activity and a simultaneous decrease in the amount of the complexed enzyme. During the period of ornithine decarboxylase decay, when cardiac putrescine content had reached high values, the level of the complex increased above that of the control. Administration of putrescine (1.5 mmol/kg, twice) or dexamethasone (4 mg/kg) produced a decrease of heart ornithine decarboxylase activity, while it did not remarkably affect the level of complexed ornithine decarboxylase, therefore raising significantly the ratio of bound to total ornithine decarboxylase. Putrescine also elicited the appearance of free antizyme, concomitantly with the disappearance of free ornithine decarboxylase activity after 3-4 h of treatment. These results indicate that a significant amount of ornithine decarboxylase occurs in an inactive form in the heart under physiological conditions and that its absolute and relative levels may vary following stimuli which affect heart ornithine decarboxylase activity.  相似文献   

3.
James F. Richards 《Life sciences》1978,23(15):1619-1623
The activity of ornithine decarboxylase was measured in several tissues of young female rats after treatment with cortisone acetate or dexamethasone. The expected increase in activity observed in liver and kidney was in marked contrast to the profound decrease found in thymus and spleen. Initially high activity in thymus was decreased to very low levels, sometimes below the limit of the assay procedure, 5 hours after treatment with dexamethasone or cortisone. There was also a large decrease in activity of the enzyme in spleen of hormone-treated rats. In both tissues, the marked effect was still evident 12 hours after treatment.  相似文献   

4.
Several species of ornithine decarboxylase were separated by chromatography of rat thymus and kidney extracts on DEAE-Sepharose CL-6B. One major and one minor species were absent from thymus of rats two hours after hormone treatment but otherwise, the elution profile was identical to thymus from control animals. The elution patterns of ODC activity in kidneys of rats treated 2.5 or 5 hours before sacrifice with dexamethasone differ from that of control kidney and from each other. Enzyme from kidneys early after hormone treatment is eluted earlier than enzyme from control tissue, while at 5 hours, the enzyme is eluted much later than in the control. This suggests that the hormone-induced activity is subsequently modified.  相似文献   

5.
The activities of ornithine decarboxylase and thymidine kinase were determined in tissues of young intact and hypophysectomized rats at various times after treatment with prolactin. In both types of animals, ornithine decarboxylase activity increased in liver, kidney, spleen and adrenal of prolactin treated rats. Thymidine kinase activity increased only in liver and spleen of intact rats. Increase in the kinase activity was smaller, and occurred later than the change in ornithine decarboxylase. In hypophysectomized animals, thymidine kinase activity increased in spleen, but not in liver, following prolactin treatment.  相似文献   

6.
Treatment of rats with the glucocorticoid dexamethasone causes an increase in the activity of cytosolic spermidine N1-acetyltransferase both in the spleen and thymus, but not, however, in liver, kidney or lung. The induced spermidine N1-acetyltransferase activity in the spleen catalyses acetylation of spermidine as well as spermine and sym-norspermidine, but not of diamines and histones. The enzyme induction depends on the dose of dexamethasone, and is suppressed by cycloheximide, which suggests that de novo protein synthesis is required for the action of this glucocorticoid. N1-acetylspermidine accumulates in the spleen after dexamethasone treatment, while spermidine progressively decreases and is partly converted into putrescine, the content of which transiently increases. In accordance with previous reports, dexamethasone was found to cause a rapid and large fall in the activity of spleen ornithine decarboxylase which was effected via the appearance of an inhibitor of the enzyme. Glucocorticoids exert large catabolic effects on lymphoid tissues, and further selectively affect the activities of spermidine N1-acetyltransferase and ornithine decarboxylase in the thymus and spleen. These latter selective responses may represent an important early event in lymphoid tissue response to glucocorticoid hormones.  相似文献   

7.
A marked decrease in activity of ornithine decarboxylase in thymus and spleen occurs soon after treatment of rats with a glucocorticoid. In the present study, evidence was obtained that extracts of these tissues prepared 5 h after administration of dexamethasone, when the enzyme activity is very low, contain an inhibitor of ornithine decarboxylase. The inhibitor is also present at 12 h after treatment and, in lesser amount, at 2.5 h, but was not evident at 24 h. The inhibitory activity was destroyed by treatment with heat or with trypsin, and was not lost on dialysis of the extract. Preliminary experiments indicate that the Mr of the inhibitor is greater than 50 000, which differentiates it from antizyme, an inhibitor of ornithine decarboxylase found in several other cell types. The inhibitor seems to act by a non-catalytic and non-competitive mechanism. The inhibition is dependent on the amount of inhibitor and does not change with time. Since inhibition is not changed by dialysis of the inhibitory extract, its activity apparently does not require small-Mr substances. This differentiates it from inhibitors which inactivate ornithine decarboxylase by covalent modification, such as the polyamine-dependent protein kinase or transglutaminase. The formation of this inhibitor is an early event in lymphoid tissues in response to dexamethasone and may be important in causing the inhibition of cell division which precedes the destruction of lymphocytes.  相似文献   

8.
Ornithine decarboxylase activity was studied in heart, kidney, liver, thymus, lung, spleen, skeletal muscle and fat of hypophysectomized rats after growth hormone treatment. A marked increase in enzyme activity was observed in kidney and liver, and a significant increase in heart and thymus at 4 h after injection of growth hormone. The kidney was the most responsive organ with an increase in activity of about 100 fold. The enzyme activity in kidney responded to a dose of 10 μg of growth hormone. Daily injection for 12 days raised activity only in the heart. Infestation for 6–13 days with spargana of Spirometra mansonoides, which also causes growth of hypophysectomized rats, increased enzyme activity in the heart and thymus. Intravenous injection of serum of hypophysectomized rats infested with spargana of Spirometra mansonoides caused a significant increase in the enzyme activity in liver and kidney after 4 h. Growth hormone and the serum growth factor of sparganosis seem to share the characteristic of causing an early increase in ornithine decarboxylase activity in rat tissues. The marked response in kidney and liver raises the possibility that these organs are the primary targets of both substances.  相似文献   

9.
Repeated injections of 1,3-diaminopropane, a potent inhibitor of mammalian ornithine decarboxylase, induced protein-synthesis-dependent formation of macromolecular inhibitors or ;antienzymes' [Heller, Fong & Canellakis (1976) Proc. Natl. Acad. Sci. U.S.A.73, 1858-1862] to ornithine decarboxylase in normal rat liver. Addition of the macromolecular inhibitors, produced in response to repeated injections of diaminopropane, to active ornithine decarboxylase in vitro resulted in a profound loss of the enzyme activity, which, however, could be partly recovered after passage of the enzyme-inhibitor mixture through a Sephadex G-75 columin in the presence of 0.4m-NaCl. This treatment also resulted in the appearance of free inhibitor. In contrast with the separation of the enzyme and inhibitory activity after combination in vitro, it was not possible to re-activate, by using identical conditions of molecular sieving, any inhibited ornithine decarboxylase from cytosol fractions obtained from animals injected with diaminopropane. However, the idea that injection of various diamines, also in vivo, induces acute formation of macromolecular inhibitors, which reversibly combine with the enzyme, was supported by the finding that the ornithine decarboxylase activity remaining after diaminopropane injection appeared to be more stable to increased ionic strength than the enzyme activity obtained from somatotropin-treated rats. Incubation of the inhibitory cytosol fractions with antiserum to ornithine decarboxylase did not completely abolish the inhibitory action of either the cytosolic inhibitor or the antibody. A single injection of diaminopropane produced an extremely rapid decay of liver ornithine decarboxylase activity (half-life about 12min), which was comparable with, or swifter than, that induced by cycloheximide. However, although after cycloheximide treatment the amount of immunotitrable ornithine decarboxylase decreased only slightly more slowly than the enzyme activity, diaminopropane injection did not decrease the amount of the immunoreactive protein, but, on the contrary, invariably caused a marked increase in the apparent amount of antigen, after some lag period. The diamine-induced increase in the amount of the immunoreactive enzyme protein could be totally prevented by a simultaneous injection of cycloheximide. These results are in accord with the hypothesis that various diamines may result in rapid formation of macromolecular inhibitors to ornithine decarboxylase in vivo, which, after combination with the enzyme, abolish the catalytic activity but at the same time prevent the intracellular degradation of the enzyme protein.  相似文献   

10.
The binding of alpha-difluoromethylornithine, an irreversible inhibitor, to ornithine decarboxylase was used to investigate the amount of enzyme present in rat liver under various conditions and in mouse kidney after treatment with androgens. Maximal binding of the drug occurred on incubation of the tissue extract for 60min with 3mum-difluoromethyl[5-(14)C]ornithine in the presence of pyridoxal phosphate. Under these conditions, only one protein became labelled, and this corresponded to ornithine decarboxylase, having M(r) about 100000 and subunit M(r) about 55000. Treatment of rats with thioacetamide or carbon tetrachloride or by partial hepatectomy produced substantial increases in ornithine decarboxylase activity and parallel increases in the amount of enzyme protein as determined by the extent of binding of difluoromethyl[5-(14)C]ornithine. Similarly, treatment with cycloheximide or 1,3-diaminopropane greatly decreased both the enzyme activity and the amount of difluoromethyl-[5-(14)C]ornithine bound to protein. In all cases, the ratio of drug bound to activity was 26fmol/unit, where 1 unit corresponds to 1nmol of substrate decarboxylated in 30min. These results indicate that even after maximal induction of the enzyme in rat liver there is only about 1ng of enzyme present per mg of protein. When mice were treated with androgens there was a substantial increase in renal ornithine decarboxylase activity, the magnitude of which depended on the strain. There was an excellent correspondence between the amount of activity present and the capacity to bind labelled alpha-difluoromethylornithine in the mouse kidney extracts, but in this case the ratio of drug bound to activity was 14fmol/unit, suggesting that the mouse enzyme has a higher catalytic-centre activity. After androgen induction, the mouse kidney extracts contain about 170ng of enzyme/mg of protein. These results indicate that titration with alpha-difluoromethylornithine provides a valuable method by which to quantify the amount of active ornithine decarboxylase present in mammalian tissues, and that the androgen-treated mouse kidney is a much better source for purification of the enzyme than is rat liver.  相似文献   

11.
A good correlation was observed between the reciprocal of the half-life of ornithine decarboxylase (ODC) activity in the presence of cycloheximide and the relative amount of ODC-antizyme complex to total ODC (free ODC plus complexed ODC) activity in HTC cells examined at various times after cell dilution or change of medium. Pretreatment of cells with putrescine increased the relative amount of ODC-antizyme complex and decreased the half-life of ODC decay. These results suggested that antizyme plays a key role in ODC degradation.  相似文献   

12.
Antibodies were produced in rabbits to homogeneous mouse kidney ornithine decarboxylase and used to determine the amount of this protein present in kidney extracts by a competitive radioimmunoassay procedure. The labeled ligand for this assay was prepared by reacting renal ornithine decarboxylase with [5-3H] alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor. The sensitivity of the assay was such that 1 ng of protein could be quantitated and the binding to ornithine decarboxylase of a macromolecular inhibitor (antizyme) or alpha-difluoromethylornithine did not affect the reaction. It was found that treatment of female mice with testosterone produced a 400-fold increase in ornithine decarboxylase protein in the kidney within 4-5 days. Exposure to cycloheximide or to 1,3-diaminopropane led to a rapid disappearance of the protein which paralleled the loss of enzyme activity. There was no sign of any immunoreactive but enzymatically inactive form of mouse kidney ornithine decarboxylase under any of the conditions investigated. The results indicate that fluctuations of the enzyme activity in this organ are mediated via changes in the amount of enzyme protein rather than by post-translational modifications or interaction with inhibitors or activators.  相似文献   

13.
14.
A single intraperitoneal injection of the synthetic glucocorticoid dexamethasone into rats resulted in a marked stimulation (more than 60-fold) of hepatic ornithine decarboxylase (ODC) at 4 h after the injection, whereas the enzyme activity in thymus was almost totally (about 95%) depressed at the same time. The stimulation of ODC activity in liver was in all likelihood attributable to a greatly enhanced accumulation of mRNA species for the enzyme as revealed by Northern blot and dot-blot hybridization analyses. ODC activity in thymus, in response to dexamethasone, was only 5% of that found in control animals, but this decrease was apparently not accompanied by similar reductions of the levels of ODC message, which was in fact decreased only by 50% at the maximum. In addition to two mRNA species (2.1 and 2.6 kilobases; kb), typical to mouse cells, rat tissues seemed to contain a third hybridizable message for ODC, smaller (1.6 kb) than the above-mentioned species and not seen in samples obtained from mouse or human cells. Interestingly, these smaller poly(A)+ RNA sequences, hybridizable with cDNA complementary to mouse ODC mRNA, were apparently constitutively expressed, as the treatment with glucocorticoid altered the amount of these sequences only slightly.  相似文献   

15.
The subcellular localisation of ornithine decarboxylase and of its synthetic irreversible inhibitor, α-difluoromethylornithine, was investigated in control rat livers and in livers of animals in which the enzyme was induced by partial hepatectomy or by treatment with dexamethasone. Ornithine decarboxylase activity was distributed in normal rat liver between the nuclear (40%, mainly nucleolar) and the cytosolic (43%) fractions. Cytosolic liver ornithine decarboxylase was markedly induced after partial hepatectomy or treatment with dexamethasone, whereas the enzyme associated with the nuclear fraction was not induced by these procedures. The irreversible inhibitor was found only in the cytosol fraction and was totally absent from the nuclear fraction.  相似文献   

16.
Chronic administration of 1,3-diaminopropane, a compound inhibiting mammalian ornithine decarboxylase (EC 4.1.1.17) in vivo, effectively prevented the large increases in the concentration of putrescine that normally occur during rat liver regeneration. Furthermore, repeated injections of diaminopropane depressed by more than 85% ornithine decarboxylase activity in rat kidney. Administration of diaminopropane 60 min before partial hepatectomy only marginally inhibited ornithine decarboxylase activity at 4 h after the operation. However, when the compound was given at the time of the operation (4 h before death), or any time thereafter, it virtually abolished the enhancement in ornithine decarboxylase activity in regenerating rat liver remnant. An injection of diaminopropane given 30 to 60 min after operation, but not earlier or later, depressed S-adenosyl-L-methionine decarboxylase activity (EC 4.1.1.50) 4 h after partial hepatectomy. Diaminopropane likewise inhibited ornithine decarboxylase activity during later periods of liver regeneration. In contrast to early regeneration, a total inhibition of the enzyme activity was only achieved when the injection was given not earlier than 2 to 3 h before the death of the animals. Diaminopropane also exerted an acute inhibitory effect on adenosylmethionine decarboxylase activity in 28-h regenerating liver whereas it invariably enhanced the activity of tyrosine aminotransferase (EC 2.6.1.5), used as a standard enzyme of short half-life. Treatment of the rats with diaminopropane entirely abolished the stimulation of spermidien synthesis in vivo from [14C]methionine 4 h after partial hepatectomy or after administration of porcine growth hormone. Both partial hepatectomy and the treatment with growth hormone produced a clear stimulation of hepatic RNA synthesis, the extent of which was not altered by injections of diaminopropane in doses sufficient to prevent any enhancement of ornithine decarboxylase activity and spermidine synthesis.  相似文献   

17.
L Persson  J E Seely  A E Pegg 《Biochemistry》1984,23(16):3777-3783
An immunoblotting technique was used to study the forms of ornithine decarboxylase present in androgen-induced mouse kidney. Two forms were detected which differed slightly in isoelectric point but not in subunit molecular weight (approximately 55 000). Both forms were enzymatically active and could be labeled by reaction with radioactive alpha-(difluoromethyl)-ornithine, an enzyme-activated irreversible inhibitor. On storage of crude kidney homogenates or partially purified preparations of ornithine decarboxylase, the enzyme protein was degraded to a smaller size (Mr approximately 53 000) without substantial loss of enzyme activity. The synthesis and degradation of ornithine decarboxylase protein were studied by labeling the protein by intraperitoneal injection of [35S]methionine and immunoprecipitation using both monoclonal and polyclonal antibodies. The fraction of total protein synthesis represented by renal ornithine decarboxylase was increased at least 25-fold by testosterone treatment of female mice and was found to be about 1.1% in the fully induced androgen-treated female. Both forms of the enzyme were rapidly labeled in vivo, and the immunoprecipitable ornithine decarboxylase protein was almost completely lost after 4-h exposure to cycloheximide, confirming directly the very rapid turnover of this enzyme. Treatment with 1,3-diaminopropane which is known to cause a great reduction in ornithine decarboxylase activity did not greatly selectively inhibit the synthesis of the enzyme. However, 1,3-diaminopropane did produce an increase in the rate of degradation of ornithine decarboxylase and a general reduction in protein synthesis. These two factors, therefore, appear to be responsible for the loss of ornithine decarboxylase activity and protein in response to 1,3-diaminopropane.  相似文献   

18.
Effect of caffeine on ornithine metabolism in rat brain, liver and kidney   总被引:1,自引:0,他引:1  
Prolonged treatment with caffeine promotes in rats an increase of liver ornithine carbamyltransferase activity (14-day treatment). In contrast, arginase activity is already reduced in brain and kidney after 10 days, and in the liver much later (17 days). Ornithine transaminase activity was increased in both liver and kidney, while in the brain it was reduced (17 days). Ornithine decarboxylase activity showed only minor modifications in kidney, while it was unchanged in brain. Of the polyamines, only spermidine was significantly modified, being increased in brain, decreased in liver and kidney. Although these results do not explain the mechanism of the modification of brain arginine and ornithine concentration promoted by caffeine, they point to further marked effects, i.e. on OAT activity and on spermidine concentration, which could have a relevant metabolic role.  相似文献   

19.
Ornithine decarboxylase activity in insulin-deficient states   总被引:1,自引:1,他引:0       下载免费PDF全文
The activity of ornithine decarboxylase, the rate-controlling enzyme in polyamine biosynthesis, was determined in tissues of normal control rats and rats made diabetic with streptozotocin. In untreated diabetic rats fed ad libitum, ornithine decarboxylase activity was markedly diminished in liver, skeletal muscle, heart and thymus. Ornithine decarboxylase was not diminished in a comparable group of diabetic rats maintained on insulin. Starvation for 48h decreased ornithine decarboxylase activity to very low values in tissues of both normal and diabetic rats. In the normal group, refeeding caused a biphasic increase in liver ornithine decarboxylase; there was a 20-fold increase in activity at 3h followed by a decrease in activity, and a second peak between 9 and 24h. Increases in ornithine decarboxylase in skeletal muscle, heart and thymus were not evident until after 24–48h of refeeding, and only a single increase occurred. The increase in liver ornithine decarboxylase in diabetic rats was greater than in normal rats after 3h of refeeding, but there was no second peak. In peripheral tissues, the increase in ornithine decarboxylase with refeeding was diminished. Skeletal-muscle ornithine decarboxylase is induced more rapidly when meal-fed rats are refed after a period without food. Refeeding these rats after a 48h period without food caused a 5-fold increase in ornithine decarboxylase in skeletal muscle at 3h in control rats but failed to increase activity in diabetic rats. When insulin was administered alone or together with food to the diabetic rats, muscle ornithine decarboxylase increased to activities even higher than in the refed controls. In conclusion, these findings indicate that the regulation of ornithine decarboxylase in many tissues is grossly impaired in diabetes and starvation. They also suggest that polyamine formation in vivo is an integral component of the growth-promoting effect of insulin or some factor dependent on insulin.  相似文献   

20.
The activities of ornithine decarboxylase and spermidine N1-acetyltransferase started to rise in normal rat liver 4 h after the intraperitoneal injection of methylglyoxal bis(guanylhydrazone) (MGBG; 80 mg/kg). Ornithine decarboxylase had its greatest activity 24 h after a single injection of MGBG and the acetyltransferase peaked 8 h after the injection. Measurement of the apparent half-life of ornithine decarboxylase after MGBG treatment revealed a clear decrease in the decay rate of the enzyme in both normal and regenerating rat liver. MGBG slowed the decay of the transferase also in normal rat liver, as well as inhibiting its activity in vitro. The stabilization by MGBG of these two short-lived proteins involved in metabolism of polyamines should lead to their accumulation in liver, thus explaining their increased activities. In the case of ornithine decarboxylase, studies with a specific antibody against mouse kidney ornithine decarboxylase showed that the rise in ornithine decarboxylase activity after MGBG application was not due to the appearance of an immunologically different isozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号