首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously reported that Tat-Cu,Zn-superoxide dismutase (Tat-SOD), a major antioxidant enzyme, can be directly transduced into mammalian cells and skin [Kwon et al. (2000); Park et al. (2002)]. To enhance the therapeutic potential of Tat-SOD in the treatment of various disorders, we screened a number of natural products for their ability to increase transduction efficiency. Ginsenosides were effective with cultured HeLa cells and enhanced the penetration of Tat-SOD into both the epidermis and the dermis of the subcutaneous layer when sprayed on mice skin. Although their mechanism of action is not fully understood we believe that ginsenosides may be useful cofactors with this antioxidant enzyme in anti-aging cosmetics or as a therapeutic protein in disorders related to reactive-oxygen species.  相似文献   

2.
Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), have been considered to have a beneficial effect against various diseases that are mediated by the reactive oxygen species (ROS). Although a variety of modified recombinant antioxidant enzymes have been generated to protect against oxidative stresses, the lack of their transduction ability into cells resulted in a limited ability to detoxify intracellular ROS. To render the SOD enzyme capable of detoxifying intracellular ROS when added extracellularly, cell-permeable recombinant SOD proteins were generated. A human Cu,Zn-superoxide dismutase (Cu,Zn-SOD) gene was fused with a gene fragment that encodes the 9 amino acids Tat protein transduction domain (RKKRRQRRR) of HIV-1 and lysine rich peptide (KKKKKKKKK) in a bacterial expression vector in order to produce a genetic in-frame Tat-SOD and 9Lys-SOD fusion protein, respectively. The expressed and purified Tat-SOD and 9Lys-SOD fusion proteins can transduce into human fibroblast cells, and they were enzymatically active and stable for 24 h. The cell viability of the fibroblast cells that were treated with paraquat, an intracellular superoxide anion generator, was increased by the transduced Tat-SOD or 9Lys-SOD. The transduction efficacy of 9Lys-SOD was more efficient than that of Tat-SOD. We evaluated the ability of the SOD fusion pmteins to transduce into animal skin. This analysis showed that Tat-SOD and 9Lys-SOD fusion proteins efficiently penetrated into the epidermis as well as the dermis of the subcutaneous layer, when sprayed on mice skin (judged by the immunohistochemistry and specific enzyme activities). The enzymatic activity of the transduced 9Lys-SOD was higher than that of Tat-SOD, indicating that the penetration of 9Lys-SOD was more efficient when put into the skin. These results suggest Tat-SOD and 9Lys-SOD fusion proteins can be used as anti-aging cosmetics, or in protein therapy, for various disorders that are related to this antioxidant enzyme and ROS.  相似文献   

3.
It has been reported that Tat-SOD can be directly transduced into mammalian cells and skin and acts as a potential therapeutic protein in various diseases. To isolate the compound that can enhance the transduction efficiency of Tat-SOD, we screened a number of natural products. 3-O-[beta-D-Glucopyranosyl(1-->4)-alpha-L-arabinopyranosyl]- hederagenin (OGAH) was identified as an active component of Fatsia japonica and is known as triterpenoid glycosides (hederagenin saponins). OGAH enhanced the transduction efficiencies of Tat-SOD into HeLa cells and mice skin. The enzymatic activities in the presence of OGAH were markedly increased in vitro and in vivo when compared with the controls. Although the mechanism is not fully understood, we suggest that OGAH, the active component of Fatsia japonica, might change the conformation of the membrane structure and it may be useful as an ingredient in antiaging cosmetics or as a stimulator of therapeutic proteins that can be used in various disorders related to reactive oxygen species (ROS).  相似文献   

4.
5.
Antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) have been considered to have a beneficial effect against various diseases mediated by reactive oxygen species (ROS). Although a variety of modified recombinant antioxidant enzymes have been generated to protect against the oxidative stresses, the lack of their transduction ability into cells resulted in limited ability to detoxify intracellular ROS. To render the catalase enzyme capable of detoxifying intracellular ROS when added extracellularly, cell-permeable recombinant catalase proteins were generated. A human liver catalase gene was cloned and fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) and arginine-rich peptides (RRRRRRRRR) in a bacterial expression vector to produce genetic in-frame Tat-CAT and 9Arg-CAT fusion proteins, respectively. The expressed and purified fusion proteins can be transduced into mammalian cells (HeLa and PC12 cells) in a time- and dose-dependent manner when added exogenously in culture medium, and transduced fusion proteins were enzymatically active and stable for 60 h. When exposed to H(2)O(2), the viability of HeLa cells transduced with Tat-CAT or 9Arg-CAT fusion proteins was significantly increased. In combination with transduced SOD, transduced catalase also resulted in a cooperative increase in cell viability when the cells were treated with paraquat, an intracellular antioxide anion generator. We then evaluated the ability of the catalase fusion proteins to transduce into animal skin. This analysis showed that Tat-CAT and 9Arg-CAT fusion proteins efficiently penetrated the epidermis as well as the dermis of the subcutaneous layer when sprayed on animal skin, as judged by immunohistochemistry and specific enzyme activities. These results suggest that Tat-CAT and 9Arg-CAT fusion proteins can be used in protein therapy for various disorders related to this antioxidant enzyme.  相似文献   

6.
Reactive oxygen species (ROS) are considered an important mediator in pancreatic beta cell destruction, thereby triggering the development of insulin-dependent diabetes mellitus. In the present study, we investigated the HIV-1 Tat protein transduction domain-mediated transduction of Cu,Zn-superoxide dismutase (SOD), which supplies SOD activity exogenously in pancreatic beta cells under oxidative stress. Tat-SOD fusion protein was successfully delivered into insulin-producing RINm5F cells and rat islet cells. The intracellular dismutation activities of SOD were found to increase in line with the amount of protein delivered into the cells. ROS, nitric oxide-induced cell death, lipid peroxidation, and the DNA fragmentation of insulin-producing cells were found to be significantly reduced when the cells were pretreated with Tat-SOD. Next, we examined the in vivo transduction of Tat-SOD into streptozotocin-induced diabetic mice. A single intraperitoneal injection of Tat-SOD resulted in the delivery of this biologically active enzyme to the pancreas. Moreover, increased radical scavenging activity in the pancreas was induced by multiple injections of Tat-SOD, and this enhanced the tolerance of pancreatic beta cells to oxidative stress. These results suggest that the transduction of Tat-SOD offers a new strategy for protecting pancreatic beta cells from destruction by relieving oxidative stress in ROS-implicated diabetes.  相似文献   

7.
Transduced Tat-SOD fusion protein protects against ischemic brain injury   总被引:7,自引:0,他引:7  
Reactive oxygen species (ROS) are implicated in reperfusion injury after transient focal cerebral ischemia. The antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD), is one of the major means by which cells counteract the deleterious effects of ROS after ischemia. Recently, we reported that when Tat-SOD fusion protein is transduced into pancreatic beta cells it protects the beta cells from destruction by relieving oxidative stress in ROS-implicated diabetes (Eum et al., 2004). In the present study, we investigated the protective effects of Tat-SOD fusion protein against neuronal cell death and ischemic insults. When Tat-SOD was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Immunohistochemical analysis revealed that Tat-SOD injected intraperitoneally (i.p.) into mice has access to various tissues including brain neurons. When i.p. injected into gerbils, Tat-SOD prevented neuronal cell death in the hippocampus in response to transient fore-brain ischemia. These results suggest that Tat-SOD provides a strategy for therapeutic delivery in various hu-man diseases, including stroke, related to this anti-oxidant enzyme or to ROS.  相似文献   

8.
9.
The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD) is responsible for highly efficient protein transduction across plasma membranes. In a previous study, we showed that Tat-Cu,Zn-superoxide dismutase (Tat-SOD) can be directly transduced into mammalian cells across the lipid membrane barrier. In this study, we fused the human SOD gene with a Tat PTD transduction vector at its N- and/or C-terminus. The fusion proteins (Tat-SOD, SOD-Tat, Tat-SOD-Tat) were purified from Escherichia coli and their ability to enter cells in vitro and in vivo compared by Western blotting and immunohistochemistry. The transduction efficiencies and biological activities of the SOD fusion protein with the Tat PTD at either terminus were equivalent and lower than the fusion protein with the Tat PTD at both termini. The availability of a more efficient SOD fusion protein provides a powerful vehicle for therapy in human diseases related to this anti-oxidant enzyme and to reactive oxygen species.  相似文献   

10.
The effect of increased intracellular oxygen activation on cellular antioxidant defenses in CHO and HeLa cells was studied. In both cell types, hyperoxic exposure (up to 4 days, 600-700 mm Hg O2) and in CHO cells menadione (up to 3 days, 15 microM) failed to affect the enzymatic antioxidant defenses Mn-containing superoxide dismutase (Mn-SOD), CuZn-SOD, catalase and glutathione peroxidase. The markedly increased antioxidant enzyme activities observed in a recently obtained oxygen-tolerant CHO variant persisted under normoxia. These data suggest that the synthesis of antioxidant enzymes is constitutive. Glutathione levels of HeLa cells did not respond to hyperoxia whereas in CHO cells hyperoxia and menadione exposure resulted in a 2- and 7-fold increase in glutathione contents, respectively. However, considering the large variations in glutathione contents observed under normal culture conditions, it is uncertain whether this increase is to be considered as a true adaptive response.  相似文献   

11.
Kim DW  Kim CK  Choi SH  Choi HS  Kim SY  An JJ  Lee SR  Lee SH  Kwon OS  Kang TC  Won MH  Cho YJ  Cho SW  Kang JH  Kim TY  Lee KS  Park J  Eum WS  Choi SY 《Biochimie》2005,87(5):481-487
Pyridoxal kinase (PK) catalyses the phosphorylation of vitamin B6 to pyridoxal-5'-phosphate (PLP). A human brain PK gene was fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) in a bacterial expression vector to produce a genetic in-frame Tat-PK fusion protein. The expressed and purified Tat-PK fusion proteins transduced efficiently into PC12 cells in a time- and dose-dependent manner when added exogenously in culture media. Once inside the cells, the transduced Tat-PK proteins showed catalytic activity and are stable for 48 h. The intracellular concentration of PLP, which is known as a biologically active form of vitamin B6, was increased by pre-treatment of Tat-PK to the PC12 cells. Those results suggest that the transduction of Tat-PK fusion protein can be one of the ways to regulate the PLP level and to replenish this enzyme in the various neurological disorders related to vitamin B6.  相似文献   

12.
Kim DW  Kim DS  Kim MJ  Kwon SW  Ahn EH  Jeong HJ  Sohn EJ  Dutta S  Lim SS  Cho SW  Lee KS  Park J  Eum WS  Hwang HS  Choi SY 《BMB reports》2011,44(10):647-652
The protein transduction domains have been reported to have potential to deliver the exogenous molecules, including proteins, to living cells. However, poor transduction of proteins limits therapeutic application. In this study, we examined whether imipramine could stimulate the transduction efficiency of PEP-1 fused proteins into astrocytes. PEP-1-catalase (PEP-1- CAT) was transduced into astrocytes in a time- and dose-dependent manner, reducing cellular toxicity induced by H(2)O(2). Additionally, the group of PEP-1-CAT (+) imipramine showed enhancement of transduction efficiency and therefore increased cellular viability than that of PEP-1-CAT alone. In the gerbil ischemia models, PEP-1-CAT displayed significant neuroprotection in the CA1 region of the hippocampus. Interestingly, PEP-1-CAT (+) imipramine prevented neuronal cell death and lipid peroxidation more markedly than PEP-1-CAT alone. Therefore, our results suggest that imipramine can be used as a drug to enhance the transduction of PEP-1 fusion proteins to cells or animals and their efficacies against various disorders.  相似文献   

13.
Reactive oxygen species (ROS) are implicated in reperfusion injury after transient focal cerebral ischemia. The antioxidant enzyme Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS after ischemia. Recently, we reported that denatured Tat-SOD fusion protein is transduced into cells and skin tissue. Moreover, PEP-1 peptide, which has 21 amino acid residues, is a known carrier peptide that delivers full-length native proteins in vitro and in vivo. In the present study, we investigated the protective effects of PEP-1-SOD fusion protein after ischemic insult. A human SOD gene was fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-SOD fusion protein. The expressed and purified fusion proteins were efficiently transduced both in vitro and in vivo with a native protein structure. Immunohistochemical analysis revealed that PEP-1-SOD injected intraperitoneally (i.p.) into mice can have access into brain neurons. When i.p.-injected into gerbils, PEP-1-SOD fusion proteins prevented neuronal cell death in the hippocampus caused by transient forebrain ischemia. These results suggest that the biologically active intact forms of PEP-1-SOD provide a more efficient strategy for therapeutic delivery in various human diseases related to this antioxidant enzyme or to ROS, including stroke.  相似文献   

14.
Pyridoxine-5-P oxidase catalyses the terminal step in the biosynthesis of pyridoxal-5-P, the biologically active form of vitamin B6 which acts as an essential cofactor. Here, a human brain pyridoxine-5-P oxidase gene was fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) in a bacterial expression vector to produce a genetic in-frame Tat-pyridoxine-5-P oxidase fusion protein. Expressed and purified Tat-pyridoxine-5-P oxidase fusion protein transduced efficiently into PC12 cells in a time- and dose-dependent manner when added exogenously to culture media. Once inside the cells, the transduced Tat-pyridoxine-5-P oxidase protein showed catalytic activity and was stable for 48 h. Moreover, the formation of pyridoxal-5-P was increased by adding exogenous Tat-pyridoxine-5-P oxidase to media pre-treated with the vitamin B6 precursor pyridoxine. In addition, the intracellular concentration of pyridoxal-5-P was markedly increased when Tat-pyridoxal kinase was transduced together with Tat-pyridoxine-5-P oxidase into cells.These results suggest that the transduction of Tat-pyridoxine-5-P oxidase fusion protein presents a means of regulating the level of pyridoxal-5-P and of replenishing this enzyme in various neurological disorders related to vitamin B6.  相似文献   

15.
Cellular glutathione levels may exceed vitamin C levels by 10-fold, generating the question about the real antioxidant role that low intracellular concentrations of vitamin C can play in the presence of a vast molar excess of glutathione. We characterized the metabolism of vitamin C and its relationship with glutathione in primary cultures of human endothelial cells oxidatively challenged by treatment with hydrogen peroxide or with activated cells undergoing the respiratory burst, and analyzed the manner in which vitamin C interacts with glutathione to increase the antioxidant capacity of cells. Our data indicate that: (i) endothelial cells express transporters for reduced and oxidized vitamin C and accumulate ascorbic acid with participation of glutathione-dependent dehydroascorbic acid reductases, (ii) although increased intracellular levels of vitamin C or glutathione caused augmented resistance to oxidative stress, 10-times more glutathione than vitamin C was required, (iii) full antioxidant protection required the simultaneous presence of intracellular and extracellular vitamin C at concentrations normally found in vivo, and (iv) intracellular vitamin C cooperated in enhancing glutathione recovery after oxidative challenge thus providing cells with enhanced survival potential, while extracellular vitamin C was recycled through a mechanism involving the simultaneous neutralization of oxidant species. Therefore, in endothelial cells under oxidative challenge, vitamin C functions as an essential cellular antioxidant even in the presence of a vast molar excess of glutathione.  相似文献   

16.
The expression of the HIV-1 Tat protein in HeLa cells resulted in a 2.5-fold decrease in the activity of the antioxidant enzyme glutathione peroxidase (GPX). This decrease seemed not to be due to a disturbance in selenium (Se) uptake. Indeed, the intracellular level of Se was similar in parental and tat-transfected cells. A Se enrichment of the medium did not lead to an identical GPX activity in both cell lines, suggesting a disturbance in Se utilization. Total intracellular 75Se selenoproteins were analyzed. Several quantitative differences were observed between parental and tat-transfected cells. Mainly, cytoplasmic glutathione peroxidase and a 15-kDa selenoprotein were decreased in HeLa-tat cells, while phospholipid hydroperoxide glutathione peroxidase and low-molecular-mass selenocompounds were increased. Thioredoxin reductase activity and total levels of 75Se-labeled proteins were not different between the two cell types. The effect of Tat on GPX mRNA levels was also analyzed. Northern blots revealed a threefold decrease in the GPX/glyceraldehyde phosphate dehydrogenase mRNA ratio in HeLa-tat versus wild type cells. By deregulating the intracellular oxidant/antioxidant balance, the Tat protein amplified UV sensitivity. The LD50 for ultraviolet radiation A was 90 J/cm2 for HeLa cells and only 65 J/cm2 for HeLa-tat cells. The oxidative stress occurring in the Tat-expressing cells and demonstrated by the diminished ratio of reduced glutathione/oxidized glutathione was not correlated with the intracellular metal content. Cellular iron and copper levels were significantly decreased in HeLa-tat cells. All these disturbances, as well as the previously described decrease in Mn superoxide dismutase activity, are part of the viral strategy to modify the redox potential of cells and may have important consequences for patients.  相似文献   

17.
Low levels of intracellular antioxidant enzyme activities as well as glutathione (GSH) concentrations have been described in pancreatic beta cells. We examined the effects of intracellular GSH depletion on insulin secretion and the role of intracellular GSH in signal transduction in beta cell line, MIN6 cells. Anti-gamma-glutamylcysteine synthetase (gamma-GCS) heavy subunit ribozyme was stably transfected to MIN6 cells to reduce intracellular GSH concentration. In the presence of 10 mM glucose, ribozyme-transfected cells (RTC) increased insulin secretion from 0.58 microg/10(6) cells/h in control cells (CC) to 1.48 microg/10(6) cells/h. This was associated with increased intracellular Ca(2+) concentration in RTC, detected by fluo-3 staining. Our results demonstrated that intracellular GSH concentration might influence insulin secretion by MIN6 cells, and suggest that enhanced insulin secretion by beta cells conditioned by chronic depletion of GSH is mediated by increased intracellular Ca(2+) concentration.  相似文献   

18.
To increase the safety and efficacy of human immunodeficiency virus vaccines, several groups have conducted studies using the macaque model with single-cycle replicating simian immunodeficiency viruses (SIVs). However, these constructs had poor or diminished efficacy compared to live attenuated vaccines. We previously showed that immunization of macaques with live attenuated SIV with a deletion in the nef gene and expressing gamma interferon (IFN-gamma) results in significantly enhanced safety and efficacy. To further enhance safety, we constructed and characterized single-cycle SIVs, pseudotyped with the glycoprotein of vesicular stomatitis virus, expressing different levels of macaque IFN-gamma. Expression of IFN-gamma did not alter the infectivity or antigenicity of pseudotyped SIV. The transduction of dendritic cells (DCs) by IFN-gamma-expressing particles resulted in the up-regulation of costimulatory and major histocompatibility complex molecules. Furthermore, T cells primed with DCs transduced by SIV particles expressing high levels of IFN-gamma and then stimulated with SIV induced significantly higher numbers of spot-forming cells in an enzyme-linked immunospot assay than did T cells primed with DCs transduced with SIV particles lacking the cytokine. In conclusion, we demonstrated that the transduction of DCs in vitro with pseudotyped single-cycle SIVs expressing IFN-gamma increased DC activation and augmented T-cell priming activity.  相似文献   

19.
Activating mutations of Ras that frequently occur during malignant transformation, enhance growth-promoting signal transduction, allowing cells to bypass stringent control of cell cycle progression, thereby rendering them highly proliferative. Abundantly expressed c-Ha-ras protein in human cervical HeLa cells is farnesylated and attached to the plasma membrane, inducing enhanced signal transduction. Exposure of HeLa cells to cisplatin very efficiently inhibits cell proliferation and induces apoptosis. Unfortunately, high doses of cisplatin are strongly cytotoxic, therefore, an alternative therapeutic strategy allowing dose reduction of cisplatin by inhibition of farnesylation could increase the curative effects of cisplatin, thereby benefiting cancer patients. We used two inhibitors of farnesyl protein transferase (FPTase), FTI, and L-744,832, to sensitize HeLa cells to the action of cisplatin. The combined administration of cisplatin and inhibitors of FPTase increased the cytostatic potency of cisplatin. L-744,832 exhibited a stronger synergistic effect in combination with cisplatin than FTI. Moreover, the efficiency of the combined therapy strongly depended on the treatment regimen: The highest efficiency was achieved after combined treatment for 24 h and post-incubation with an inhibitor of FPTase for 48 h. Following this optimized treatment, apoptosis was induced in approximately 50% of HeLa cells treated with 1 microM cisplatin, representing approximately a threefold increase as compared to cisplatin monotherapy. Combined treatment of HeLa cells with cisplatin and inhibitors of FPTase significantly increases the efficacy of the therapy and allows to reduce the dose of cisplatin. Importantly, best therapeutic effects can be achieved by post-treatment with inhibitors of FPTase.  相似文献   

20.
Hubel A  Norman J  Darr TB 《Cryobiology》1999,38(2):140-153
The freezing responses of hematopoietic progenitor cells isolated from normal donors and from donors with mucopolysaccharidosis type I (MPS I) were determined using cryomicroscopy and analyzed using theoretical models for water transport and intracellular ice formation. The cells from donors with MPS I used in this investigation were cultured and transduced with a retroviral vector for the alpha-l-iduronidase (IDUA) enzyme in preclinical studies for human gene therapy. The water transport and intracellular ice formation (IIF) characteristics were determined at different time points in the culture and transduction process for hematopoietic progenitor cells expressing CD34 antigen from donors with MPS I and from normal donors. There were statistically significant changes in water transport, osmotically inactive cell volume fraction, and permeability between cells from different sources (normal donors vs donors with MPSI) and different culture conditions (freshly isolated vs cultured and transduced). Specifically, Lpg and Ea increased after ex vivo culture of the cells and the changes in permeability parameters were observed after as little as 3 days in culture. Similarly, the IIF characteristics of hematopoietic progenitor cells can also be influenced by the culture and transduction process. The IIF characteristics of freshly isolated cells from donors with MPS I were statistically distinct from those of cultured and transduced cells from the same donor. The ability to cryopreserve cells which are cultured ex vivo for therapeutic purposes will require an understanding of the biophysical changes resulting from the culture conditions and the manner in which these changes influence viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号