首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
A phylogenetic analysis of theUlmaceae, Cannabaceae, Barbeyaceae, andBroussonetia of theMoraceae produced nine equally parsimonious trees with 127 steps. TheUlmoideae (Ulmaceae, sensuGrudzinskaya) are a monophyletic group and distinct from theCeltidoideae. The genusAmpelocera occupies an isolated taxonomic position among the celtidoids. The similarity ofAmpelocera to the fossil celtidoid flowerEoceltis of North America suggests thatAmpelocera posesses an archaic suite of characters, and occupies a primitive position among the celtidoids, theCannabaceae and theMoraceae. The relationships among the other celtidoid taxa,Cannabaceae, andBroussonetia are problematic. TheCannabaceae andBroussonetia of theMoraceae are nested within the celtidoids suggesting that this is a paraphyletic group. The close, but unresolved, relationship of the celtidoids to theMoraceae andCannabaceae observed in this analysis, and the appearance of the celtidoids in the fossil record prior to the ulmoids suggests that the evolutionary relationship of the ulmoids and celtidoids may be more distant than current taxonomic treatments reflect.  相似文献   

2.
The phylogeny of Japanese species ofChrysosplenium (Saxifragaceae) was examined using variation in DNA sequences. Sequences ofrbcL andmatK genes were compared for their feasibility for reconstructing the phylogeny ofChrysosplenium, and thematK sequences was found to give greater resolution. All but one of the 17 Japanese species have been examined formatK gene sequences and phylogenetic analysis of these data resulted in eight most parsimonious trees of 390 steps and a consistency index (Cl) of 0.823. The molecular phylogeny obtained was generally in agreement with Hara's (1957) classification based upon phenotypic similarity, although a conclusion needs extensive examination of the genus on a world-wide level. Using the phylogenetic data, character evolution was examined, especially in the characters traditionally used for grouping infrageneric taxa. Differentiation of opposite and alternate phyllotaxis appears to have occurred only once in the course of evolution ofChrysosplenium.  相似文献   

3.
To elucidate the evolutionary relationship between the Spermatophyta, Pteridophyta and Bryophyta, we cloned a fragment of chloroplast DNA from the fernAngiopteris lygodiifolia (Pteridophyta) and determined its nucleotide sequence. The fragment contained theatpB,rbcL,trnR-CCG,dedB andpsaI genes. Comparisons of the deduced amino acid and nucleotide sequences of these genes from the three plant groups indicate thatAngiopteris sequences are more closely related to those of Bryophyta species (85% identity on average) than to those of seed plants (76% identity on average), supporting a hypothesis that the Bryophyta and Pteridophyta diverged more recently from one another than their common progenitor diverged from that of the Spermatophyta.  相似文献   

4.
TherbcL gene of 25 taxa was sequenced and analyzed cladistically in order to define more precisely the orderAsterales s.l. and to reconstruct the phylogeny ofGoodeniaceae. The cladistic analyses show that theAsterales comprise the familiesAbrophyllaceae, Alseuosmiaceae, Argophyllaceae, Asteraceae, Calyceraceae, Campanulaceae s.l.,Donatiaceae, Goodeniaceae (includingBrunoniaceae),Menyanthaceae, Pentaphragmataceae, andStylidiaceae. Abrophyllaceae, Alseuosmiaceae, Brunoniaceae, andDonatiaceae have previously not been studied in this respect. Within theGoodeniaceae, four groups supported by therbcL data can be distinguished: the genusLechenaultia, theAnthotium-Dampiera-group, the genusBrunonia, and a group formed by the remaining genera, theScaevola-Goodenia-group.  相似文献   

5.
A phylogenetic analysis of 25 species, representing eight genera of theRubieae tribe (Rubiaceae), has been made using the DNA sequence of the chloroplastatp B-rbc L intergene region. Six tropical genera from other tribes ofRubiaceae have been used as outgroups. Whatever the method of analysis (distance, parsimony or maximum likelihood), five groups are clearly separated and described as informal clades. Their relative relationships are not clearly resolved by the parsimony analysis, resulting in eight equally parsimonious trees, 327 steps long, with a consistency index (CI) of 0.749 (excluding uninformative sites). TheRubieae tribe appears monophyletic from the data available. Some new and partly unexpected phylogenetic relationships are suggested. The genusRubia forms a separate clade and appears to be the relatively advanced sister group of the remaining taxa. TheSherardia clade also includes the generaCrucianella andPhuopsis. Galium sect.Aparinoides appears closely attached to theAsperula sect.Glabella clade. The remaining taxa ofGalium are paraphyletic:Galium sect.Platygalium (in theCruciata clade) is linked to the advanced generaCruciata andValantia; the more apomorphic groups ofGalium form theGalium sect.Galium clade, including the perennial sectionsGalium, Leiogalium, andLeptogalium as well as the annual (and possibly polyphyletic) sect.Kolgyda.  相似文献   

6.
Restriction site mapping of chloroplast DNA from 31 species representing 26 genera of theRanunculaceae was performed using eleven restriction endonucleases. The chloroplast genome varies in length from approximately 152 to 160 kb. Length variants are frequent in theRanunculaceae and range from usually less than 300 bp to rarely 1.5 kb. The inverted repeat is extended into the large single copy (LSC) region by 4–4.5 kb inAnemone, Clematis, Clematopsis, Hepatica, Knowltonia, andPulsatilla. Several inversions are present in the LSC-region of the cpDNA in all these genera and inAdonis. The frequency of restriction site mutations varies within the chloroplast genome in theRanunculaceae between 4 and 32 mutations per kilobase, and is lowest in the inverted repeat and the regions containing the ATPase-genes and the genespsaA, psaB, psbA, rpoB, andrbcL. A total of 547 phylogenetically informative restriction sites was utilized in cladistic analyses of the family using Wagner, Dollo, and weighted parsimony. These three parsimony analyses result in different tree topologies. Four, six, and one equally most parsimonious trees were obtained with Wagner, Dollo, and weighted parsimony, respectively. The amount of support for the monophyletic groups was evaluated using bootstrapping and decay analysis. All three parsimony methods suggest thatHydrastis is the sister group to the remainder of theRanunculaceae, and that theAnemone-Clematis group, which shares several derived cpDNA rearrangements, is monophyletic. Only a few of the traditional groups in theRanunculaceae are supported by cpDNA restriction side data. Only Dollo parsimony provides support for the hypothesis thatThalictroideae andRanunculoideae are monophyletic.  相似文献   

7.
Molecular phylogeny in the Lardizabalaceae   总被引:1,自引:0,他引:1  
Eleven species belonging to seven genera in the Lardizabalaceae were analyzed in terms of restriction fragment length polymorphism (RFLP) of chloroplast DNA and the sequence of the chloroplast gene,rbcL, of Lardizabalaceae and its related families. Phylogenetic trees inferred from parsimony, neighbor joining and maximum likelihood methods based on RFLP data showed that two South American genera,Boquila andLardizabala, and three East Asian genera,Akebia, Holboellia andStauntonia are closely related to each other, respectively. On the other hand, the parsimony, neighbor joining and maximum likelihood trees constructed using sequence data of therbcL gene showed thatAkebia, Stauntonia, Boquila andLardizabala clustered as(((Akebia, Stauntonia), Boquila), Lardizabala). This difference may be attributable to fewer informative sites inrbcL genes than in RFLP in this family.Decaisnea diverges at the very base of the Lardizabalaceae.  相似文献   

8.
Cladistic relationships of epacrids and vaccinioids (Ericaceae) are investigated using nucleotide sequence data from the chloroplast encodedmatK gene. Sequences of 56 taxa were aligned and analyzed using parsimony methods. Results show thatVaccinioideae as currently recognized are not monophyletic. The epacrids are sister to a clade that includes theLyonia group, theGaultheria group, and theVaccinieae. Arbutus andPyrola branch early inEricaceae, before the rhododendroid group.Enkianthus is sister to the remainingEricaceae (includingEpacridaceae).Vaccinieae are strongly supported as monophyletic, butVaccinium andAgapetes are polyphyletic.  相似文献   

9.
A cladistic study ofDipsacaceae (Asteridae, Dipsacales) was undertaken, based mainly on morphological and palynological characters, obtained by investigations of herbarium material and from the literature. Outgroups includedMorinaceae, Triplostegiaceae, and a subset ofValerianaceae. The consensus tree resulting from three equally parsimonious cladograms shows thatDipsacaceae are divided into two major clades, one withDipsacus andCephalaria, the other including the remaining genera. Within the latter clade,Knautia is the sister group of the rest of the taxa. This study is a reappraisal ofDipsacaceae phylogeny, and the results broadly match previous evidence.  相似文献   

10.
The systematic position ofCathaya, a relic genus of thePinaceae, was discussed based on therbcL gene sequence. The sequence data were analysed with PAUP and MEGA programs. The great genetic distance value betweenCathaya and any other genus of thePinaceae showed thatCathaya was a distinct and isolated genus. The most parsimonious Fitch tree and neighbor-joining tree showed thatCathaya was distantly related to the clade comprisingAbies, Keteleeria, Pseudolarix andTsuga, and a sister group relationship betweenCathaya andPinus was weakly supported.Pseudotsuga is closely related toLarix. In theAbies-Keteleeria-Pseudolarix-Tsuga clade,Abies has a close relationship toKeteleeria whilePseudolarix is relatively closely related toTsuga.  相似文献   

11.
The placement of a recently discovered South American monotypic genus,Pseudomonotes tropenbosii, in subfam.Monotoideae (Dipterocarpaceae) extends the geographical range of the subfamily from Africa to the Neotropics. Although morphological and anatomical evidence suggest similarities betweenPseudomonotes andMonotes, the close alliance of these two genera was questionable due to their disjunct distribution and a lack of phylogenetic analysis. In the present study, we reconstructed the phylogeny ofPseudomonotes and other putatively related taxa usingrbcL sequence data. The analysis ofrbcL sequences of 20 taxa belonging to 15 genera and eight families recovered a single most parsimonious tree. The genusSarcolaena (Sarcolaenaceae) formed a clade sister to the monophyleticDipterocarpaceae clade.Monotes andPseudomonotes formed a strongly supported group, sister to the monophyletic clade withPakaraimaea and the remaining Asiatic dipterocarp species studied. The study strongly supports the placement ofPseudomonotes within subfam.Monotoideae of theDipterocarpaceae.  相似文献   

12.
Summary Prochlorophytes similar toProchloron sp. andProchlorothrix hollandica have been suggested as possible progenitors of the plastids of green algae and land plants because they are prokaryotic organisms that possess chlorophyllb (chlb). We have sequenced theProchlorothrix genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco),rbcL andrbcS, for comparison with those of other taxa to assess the phylogenetic relationship of this species. Length differences in the large subunit polypeptide among all sequences compared occur primarily at the amino terminus, where numerous short gaps are present, and at the carboxy terminus, where sequences ofAlcaligenes eutrophus and non-chlorophyllb algae are several amino acids longer. Some domains in the small subunit polypeptide are conserved among all sequences analyzed, yet in other domains the sequences of different phylogenetic groups exhibit specific structural characteristics. Phylogenetic analyses ofrbcL andrbcS using Wagner parsimony analysis of deduced amino acid sequences indicate thatProchlorothrix is more closely related to cyanobacteria than to the green plastid lineage. The molecular phylogenies suggest that plastids originated by at least three separate primary endosymbiotic events, i.e., once each leading to green algae and land plants, to red algae, and toCyanophora paradoxa. TheProchlorothrix rubisco genes show a strong GC bias, with 68% of the third codon positions being G or C. Factors that may affect the GC content of different genomes are discussed.  相似文献   

13.
Subclass and ordinal relationships ofLoasaceae, a small predominately New World family, are examined usingrbcL sequence data. Sequences were examined for eight of the fifteen genera of theLoasaceae and the morphologically anomalous aquatic genusHydrostachys (Hydrostachyaceae). Parsimony analyses of these sequences, combined with previously publishedrcbL data, indicate thatLoasaceae belong in theCornales, and are the sister group ofHydrangeaceae. This agrees with phylogenies based on chloroplast DNA inverted repeat restriction site, morphological and chemical data. TherbcL trees support the monophyly of theLoasaceae and most generic relationships correspond to current subfamily divisions. TherbcL phylogeny also provides the first suggestion thatHydrostachys is allied with theHydrangeaceae in theCornales.  相似文献   

14.
Complete sequences for the 18S-rRNA gene of 22 bryophytes (12 completely new) were determined and used to construct phylogenetic trees. The evaluation of sequence data according to the maximum parsimony principle (PAUP 3.1.1) and the neighbor-joining method (MEGA) results in similar phylogenetic trees in which theBryopsida appear as a sister group to theJungermanniopsida, and both together as a sister group to theMarchantiopsida. Among theMarchantiopsida, theSphaerocarpales diverge early as a separate clade. TheMetzgeriales andJungermanniales are monophyletic. They belong to one clade and cannot be separated by either method of evaluation.  相似文献   

15.
A cladistic analysis of theEricales based on morphological, anatomical, embryological, and phytochemical data has been undertaken. Resulting from the analysis, 56 equally parsimonious cladograms were obtained. The tribeEnkiantheae was found to be the sister-group of the rest of theEricaceae, in which theEmpetraceae, theEpacridaceae, Pyrolaceae, andMonotropaceae are forming derived ingroups. It is thus concluded that theEricaceae are a paraphyletic assemblage as presently circumscribed, and thatEmpetraceae andEpacridaceae are better treated as members of theEricaceae.  相似文献   

16.
Though salmonid fishes are a well-studied group, phylogenetic questions remain, especially with respect to genus-level relationships. These questions were addressed with duplicate growth hormone (GH) introns. Intron sequences from each duplicate gene yielded phylogenetic trees that were not significantly different from each other in topology. Statistical tests supported validity of the controversial monotypic genusParahucho,monophyly ofOncorhynchus,and inclusion ofAcantholingua ohridanawithinSalmo.Suprisingly, GH1 intron C (GH1C) did not support the widely accepted hypothesis thatOncorhynchus(Pacific salmon and trout) andSalmo(Atlantic salmon and trout) are sibling genera; GH2C was ambiguous at this node. Previously published data were also examined for support ofSalmoandOncorhynchusas sister taxa and only morphology showed significant support. If not sister taxa, the independent evolution of anadromy—the migration to sea and return to freshwater for spawning—is most parsimonious. While there was incongruence with and among published data sets, the GH1C intron phylogeny was the best hypothesis, based on currently available molecular data.  相似文献   

17.
The taxonomic positions ofRetzia, Desfontainia, andNicodemia have been much discussed, and all three genera have been included inLoganiaceae (Gentianales). We have made a cladistic analysis ofrbcL gene sequences to determine the relationships of these taxa toGentianales. Four newrbcL sequences are presented; i.e., ofRetzia, Desfontainia, Diervilla (Caprifoliaceae), andEuthystachys (Stilbaceae). Our results show thatRetzia, Desfontainia, andNicodemia are not closely related toLoganiaceae or theGentianales. Retzia is most closely related toEuthystachys and is better included inStilbaceae. The positions ofDesfontainia andNicodemia are not settled, butDesfontainia shows affinity for theDipsacales s.l. andNicodemia for theLamiales s.l.  相似文献   

18.
Chloroplast DNA restriction site variation was examined for 35 taxa in theVernonieae and four outgroup tribes, using 17 restriction enzymes mapped for ca. 900 restriction sites per species; 139 mutations were found to be phylogenetically informative. Phylogenetic trees were constructed using Wagner and weighted parsimony, and evaluated by bootstrap and decay analyses. Relationships of Old and New World taxa indicate complex geographical relationships; there was no clear geographic separation by hemisphere. The relationships between Old and New World Vernonias found here support prior morphological analyses. The sister group to all New and most Old World taxa was composed of a small group of Old World species including yellow-flowered, trinervate-leaved species previously postulated to be basal in the tribe. The majority of both New and Old World taxa are derived from a lineage beginning with the monotypic genusStokesia, an endemic of the southeastern United States. The genusVernonia was also found to be paraphyletic within both the New and Old World. Available data do not support either the separation ofVernonia or the tribeVernonieae into geographically distinct lineages. The pattern of relationships within theVernonieae for taxa from North America, Asia, Africa, Central and South America is most similar to that of several other groups of both plants and animals with a boreotropical origin, rather than an origin in Gondwanaland. Such a pattern of distribution suggests more ancient vicariant events than are routinely postulated for theAsteraceae.  相似文献   

19.
Phylogenetic relationships of the subfamily Combretoideae (Combretaceae) were studied based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) regions, the plastid rbcL gene and the intergenic spacer between the psaA and ycf3 genes (PY-IGS), including 16 species of eight genera within two traditional tribes of Combretoideae, and two species of the subfamily Strephonematoideae of Combretaceae as outgroups. Phylogenetic trees based on the three data sets (ITS, rbcL, and PY-IGS) were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Partition-homogeneity tests indicated that the three data sets and the combined data set are homogeneous. In the combined phylogenetic trees, all ingroup taxa are divided into two main clades, which correspond to the two tribes Laguncularieae and Combreteae. In the Laguncularieae clade, two mangrove genera, Lumnitzera and Laguncularia, are shown to be sister taxa. In the tribe Combreteae, two major clades can be classified: one includes three genera Quisqualis, Combretum and Calycopteris, within which the monophyly of the tribe Combreteae sensu Engler and Diels including Quisqualis and Combretum is strongly supported, and this monophyly is then sister to the monotypic genus Calycopteris; another major clade includes three genera Anogeissus, Terminalia and Conocarpus. There is no support for the monophyly of Terminalia as it forms a polytomy with Anogeissus. This clade is sister to Conocarpus. Electronic Publication  相似文献   

20.
Cyanidioschyzon merolae andCyanidium caldarium are representative species among of the most primitive algae, although the two species are distinctly different in various morphological traits. We determined the nucleotide sequence of therbcL gene and a flanking 8-kb region in the plastid genome of each of these algae. In both algae, 12 genes were identified in this region, in an identical order. This gene order is not conserved in the plastid genomes of other species of the kingdom Plantae that have been sequenced to data. An additional unidentified open reading frame was also found in the two algae that we analyzed, which has not been described in any other species of algae includingPorphyra purpurea. Comparison of the amino acid sequences of selected genes also supported the conclusion thatCyanidioschyzon merolae andCyanidium caldarium are closely related and that they are distinct from other rhodophytes. The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL and GenBank Nucleotide Sequence Databases under the accession numbers D63675 and D63676.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号