首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We examined the mos-specific intracellular RNA species in 6m2 cells, an NRK cell line nonproductively infected with the ts110 mutant of Moloney murine sarcoma virus. These cells present a normal phenotype at 39 degrees C and a transformed phenotype at 28 or 33 degrees C, expressing two viral proteins, termed P85gag-mos and P58gag, at 28 to 33 degrees C, whereas only P58gag is expressed at 39 degrees C. It has been previously shown that 6m2 cells contain two virus-specific RNA species, a 4.0-kilobase (kb) RNA coding for P58gag and a 3.5-kb RNA coding for P85gag-mos. Using both Northern blot and S1 nuclease analyses, we show here that the 3.5-kb RNA is the predominant viral RNA species in 6m2 cells grown at 28 degrees C, whereas only the 4.0-kb RNA is detected at 39 degrees C. During temperature shift experiments, the 3.5-kb RNA species disappears after a shift from 28 to 39 degrees C and is detected again after a shift back from 39 to 28 degrees C. By Southern blot analysis, we have detected only one ts110 proviral DNA in the 6m2 genome. This observation, as well as previously published heteroduplex and S1 nuclease analyses which showed that the 3.5-kb RNA species lacks about 430 bases found at the gag gene-mos gene junction in the 4.0-kb RNA, suggests that the 3.5-kb RNA is a splicing product of the 4.0-kb RNA. The absence of the 3.5-kb RNA when 6m2 cells are grown at 39 degrees C indicates that the splicing reaction is thermosensitive. The splicing defect of the ts110 Moloney murine sarcoma virus viral RNA in 6m2 cells cannot be complemented by acute Moloney murine leukemia virus superinfection, since no 3.5-kb ts110 RNA was detected in acutely superinfected 6m2 cells maintained at 39 degrees C. The spliced Moloney murine leukemia virus env mRNA, however, is found in acutely infected cells maintained at 39 degrees C, suggesting that the lack of ts110 viral RNA splicing at 39 degrees C is not due to an obvious host defect. In sharp contrast, however, 6m2 cells chronically superinfected with Moloney murine leukemia virus produce a 3.5-kb RNA species at 39 degrees C as well as at 28 degrees C and contain proviral DNAs corresponding to the two viral RNA species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Serum-free conditioned media was collected from three sarcoma virus-transformed cell lines and an untransformed cell line. All three virally transformed lines produced and released growth factors into their serum-free media. The major activity in all cases, whether the cells were transformed by Moloney sarcoma virus (MSV) or Kirsten sarcoma virus (KiSV), or whether they were mouse or rat, was a sarcoma-growth-factor (SGF)-like activity with an apparent molecular weight of 10,000. The SGF-like pools from a Moloney sarcoma virus-transformed mouse 3T3 cell and a Kirsten sarcoma virus-transformed NRK cell were further purified by carboxymethyl cellulose chromatography. The elution profiles of these peptides were very similar. The serum-free conditioned media from the untransformed cells showed no detectable growth stimulating activity. The temperature sensitivity of an SGF-like growth factor from the supernate of a NRK cell transformed by a wild-type Kirsten sarcoma virus (KiSV) was compared with that of the SGF-like activity from the supernates of a NRK cell transformed by a ts-mutant of KiSV that is temperature sensitive with respect to transformation (ts-371 Cl 5). Neither the cells transformed by the wild-type sarcoma virus nor those transformed by the temperature sensitive virus released a SGF-like activity that was temperature sensitive under the conditions of the assays.  相似文献   

3.
Antibody to a synthetic peptide (anti-C3 serum) with the predicted sequence of the C terminus of the Moloney murine sarcoma virus (strain 124) v-mos gene was used in immunoprecipitation experiments with cytoplasmic extracts of a clone of NRK cells infected with ts110 Moloney murine sarcoma virus, termed 6m2 cells. ts110 Moloney murine sarcoma virus codes for two viral proteins of 85,000 and 58,000 Mr, termed P85 and P58, respectively, in nonproducer 6m2 cells maintained at 33°C. Anti-C3 serum specifically recognized [3H]leucine-labeled P85, but not P58, from infected cells maintained at 33°C, whereas antiserum prepared against murine leukemia virus p12 recognized both proteins. Normal serum and anti-C3 serum pretreated with excess C3 peptide did not precipitate P85. Immunoprecipitation experiments after metabolic labeling of 6m2 cells with 32Pi showed that P85 is phosphorylated. Both anti-C3 and anti-p12 sera specifically detected 32P-labeled P85. Cell-free translation of ts110 murine sarcoma virus/murine lukemia virus RNA produces P85, P58, and helper virus protein Pr63gag. Anti-C3 serum specifically precipitated P85 but neither P58 nor Pr63gag. We conclude from these studies that P85 is a product of both the gag and mos genes of ts110 murine sarcoma virus, and, therefore, it is referred to as P85gag-mos. We have not detected any other v-mos gene product in ts110-infected cells.  相似文献   

4.
Gazdar murine sarcoma virus (Gz-MSV) and Moloney murine sarcoma virus (M-MSV) are closely related. The complete M-MSV-specific nucleic acid sequences constituted a major portion of Gz-MSV-specific sequences. The MSV-specific sequences in both Gz-MSV and M-MSV genomes shared homology with hamster leukemia virus nucleic acid sequences. Both rat cells (S+L+) and hamster (S+L-) cells expressed two viral proteins of 68,000 and 70,000 daltons. These proteins were immunologically related to p60 purified from m1 virions of M-MSV.  相似文献   

5.
6.
The genetic information contained in the Kirsten and Moloney strains of mammalian RNA-containing sarcoma viruses has been analyzed by RNA . (3)H-DNA hybridization. Kirsten sarcoma virus has been found to possess two distinct sets of nucleic acid sequences. One set of sequences is contained in murine type C helper virus, and the other set is contained in rat type C helper virus. Moloney sarcoma virus contains sequences of murine type C helper virus but not of rat type C helper virus. The results indicate that Kirsten sarcoma virus arose through a process of recombination between Kirsten murine leukemia virus and nucleic acid sequences found in rat cells. A model is suggested for the formation of transforming type C viruses involving the transduction of oncogenic information.  相似文献   

7.
8.
ts110 Moloney murine sarcoma virus (Mo-MuSV)-nonproductively infected cells (6m2) have a transformed phenotype at 28 to 33 degrees C and a normal phenotype at 39 degrees C. At temperatures permissive for transformation, 6m2 cells contain P58gag produced from the 4.0-kilobase (kb) viral RNA genome and P85gag-mos translated from a 3.5-kb spliced mRNA. At 39 degrees C, only the 4.0-kb RNA and its product P58gag are detected. Two temperature-sensitive defects have been observed in ts110-infected 6m2 cells: (i) the splicing of the 4.0-kb RNA to the 3.5-kb RNA; and (ii) the thermolability of P85gag-mos and its kinase activity relative to the wild-type revertant protein, termed P100gag-mos (R.B. Arlinghaus, J. Gen. Virol. 66:1845-1853, 1985). In the present study, we examined the mos gene products of two cell lines (204-2F6 and 204-2F8) obtained by infection of normal rat kidney cells with ts110 Mo-MuSV as a simian sarcoma-associated virus pseudotype to see whether the temperature-sensitive splicing defect could be transferred by viral infection. Southern blot analysis of these two cell lines showed that viral DNAs containing restriction fragments from cellular DNA are different from those in 6m2 cells, indicating that 204-2F6 and 204-2F8 cells have different ts110 provirus integration sites from those of 6m2 cells. Northern blots, S1 mapping analyses, and immunoprecipitation experiments showed unequivocally that the splicing defect of ts110 Mo-MuSV is virus encoded and is independent of host cell factors.  相似文献   

9.
10.
Balb/c mice were inoculated intramuscularly with Moloney murine sarcoma virus in one of the hind legs. This led to the rapid development of a regressive sarcoma and also to the proliferation and osteogenic differentiation of cells in the adjacent periosteum. Examination of the tissues by transmission electron microscopy revealed the presence of type A and C virus particles within the sarcoma cells as well as within the cells of the newly formed bone. Extracellular type C virus particles were formed by budding from the cell surface and by release from disintegrating cells. No virus particles were found in the bone or the surrounding soft tissues of the contralateral, noninfected leg. These observations suggest that viral infection of periosteal cells are at least partly responsible for the osteogenic response associated with the virus-induced sarcoma. Production of growth factors by the sarcoma cells could also contribute to this process.  相似文献   

11.
Cultured cells of mammalian tumors induced by ribonucleic acid (RNA)-containing oncogenic viruses were examined for production of virus. The cell lines were established from tumors induced in rats and hamsters with either Rous sarcoma virus (Schmidt-Ruppin or Bryan strains) or murine sarcoma virus (Moloney strain). When culture fluids from each of the cell lines were examined for transforming activity or production of progeny virus, none of the cell lines was found to be infectious. However, electron microscopic examination of the various cell lines revealed the presence of particles in the rat cells transformed by either Rous sarcoma virus or murine sarcoma virus. These particles, morphologically similar to those associated with murine leukemias, were found both in the extracellular fluid concentrates and in whole-cell preparations. In the latter, they were seen budding from the cell membranes or lying in the intercellular spaces. No viruslike particles were seen in preparations from hamster tumors. Exposure of the rat cells to (3)H-uridine resulted in the appearance of labeled particles with densities in sucrose gradients typical of virus (1.16 g/ml.). RNA of high molecular weight was extracted from these particles, and double-labeling experiments showed that this RNA sedimented at the same rate as RNA extracted from Rous sarcoma virus. None of the hamster cell lines gave radioactive peaks in the virus density range, and no extractable high molecular weight RNA was found. These studies suggest that the murine sarcoma virus produces an infection analogous to certain "defective" strains of Rous sarcoma virus, in that particles produced by infected cells have a low efficiency of infection. The control of the host cell over the production and properties of the RNA-containing tumorigenic viruses is discussed.  相似文献   

12.
13.
14.
15.
B M Sefton  T Hunter  K Beemon  W Eckhart 《Cell》1980,20(3):807-816
All cells transformed by Rous sarcoma virus contain levels of phosphotyrosine in protein which are 6–10 fold greater than the very low levels present in uninfected cells. The increase is due largely to modification of cellular polypeptides. The abundance of phosphorylated tyrosines in protein in cells infected with tsLA29, a mutant of Rous sarcoma virus which is temperature-sensitive for cellular transformation, increases to 60% of maximum within 60 min of a shift to the permissive temperature and drops to a level close to that in uninfected cells within 60 min of a shift to the restrictive temperature. In light of the fact that pp60src phosphorylates tyrosine in vitro, these results suggest strongly that the modification of one or more cellular polypeptides by way of pp60src is critical for cellular transformation by Rous sarcoma virus. There is, however, no increase in the abundance of phosphotyrosine in protein in mouse cells transformed by Kirsten sarcoma virus, Moloney sarcoma virus, or SV40 virus, in chick embryo cells infected with avian myelocytomatosis virus MC29, and in rat and hamster cells transformed by polyoma virus. Thus increased phosphorylation of tyrosine is neither a universal mechanism of transformation nor an inevitable secondary cellular response to transformation.  相似文献   

16.
Fibroblastic and epithelioid clones have been isolated from the normal rat kidney line, NRK. These clones were studied for their ability to bind epidermal growth factor (EGF), susceptibility to transformation by mouse sarcoma virus (MSV), and alteration in EGF binding upon sarcoma virus transformation. The epithelioid clones bound much more EGF than the fibroblastic clones; Scatchard plots on two of these clones, one epithelioid and one fibroblastic, showed that the higher EGF binding (1.3 x 10(5) molecules per cell for the epithelioid clone and 1.3 x 10(4) molecules per cell for the fibroblastic clone) was due to a greater number or receptors on the epithelioid cells rather than to a difference in the apparent affinity constant. When the clones were transformed by Moloney murine sarcoma virus the EGF binding decreased, the effect being greater with the fibroblastic clones. In 20 out of 20 independently isolated sarcoma virus transformed fibroblastic clones, the level of EGF binding was either greatly reduced or completely eliminated. In contrast to EGF, another growth factor, multiplication stimulating activity (MSA), bound to a greater extent to the fibroblastic clones than the epithelioid clones, and its binding was not decreased by sarcoma virus transformation. The results show that loss of EGF binding ability correlates with expression of the murine sarcoma virus transformation.  相似文献   

17.
We demonstrated that the Kirsten murine sarcoma virus (KiMSV) and the Harvey murine sarcoma virus (HaMSV) converted human skin fibroblasts (HSF) into adipocytes. Adipocytic conversion of HSF by KiMSV and HaMSV was dependent on the presence of glucocorticosteroids. The Kirsten murine leukemia virus, the Harvey murine sarcoma [corrected] virus and the amphotropic helper virus (AP292) were ineffective by themselves. Balb murine sarcoma virus and Moloney murine sarcoma virus were, to a lesser degree, able to effect adipocytic conversion of HSF. In contrast, the feline sarcoma virus and the simian sarcoma virus did not cause this conversion. Together, the results suggest a role for certain oncogenes and glucocorticosteroids in the transformation/neodifferentiation of human cells.  相似文献   

18.
19.
Carcinogenic metal compounds, with the exception of chromium(VI), have been found to be poorly mutagenic in both prokaryotic and mammalian cell mutagenesis assays, yet they are clearly clastogenic (Hansen and Stern, 1984). Thus, the role of metals as initiators in carcinogenesis has been difficult to delineate. In an effort to develop a model system capable of assaying DNA damage caused by carcinogenic metals, we have investigated the role of NiCl2, CdCl2, Na2CrO4, and NMU in a murine sarcoma virus-infected mammalian cell line in which expression of the retroviral v-mos gene is growth-temperature regulated. This cell line, designated 6m2, contains a single-copy, stably integrated, mutant Moloney murine sarcoma virus DNA (designated MuSVts110) and is temperature sensitive for morphological transformation due to a conditionally defective viral RNA-splicing event that in turn regulates expression of the viral transforming gene. Mutations affecting the viral DNA in 6m2 cells can be detected if these alterations lead to changes in the structure or expression of the transforming protein encoded by the MuSVts110 v-mos gene. Analysis of the viral proteins from 6m2 'revertant' cell lines (as defined by reversion to the transformed phenotype at all growth temperatures) selected after treatment with the above agents showed that NiCl2, NMU, and Na2CrO4 each induced a different yet specific type of mutation. NiCl2 and NMU each altered the temperature sensitivity of viral RNA splicing, possibly due to base substitution mutations, but did so to distinctly different extents. Na2CrO4 affected the structure of the viral proteins by inducing what appear to be short frameshift mutations that resulted in the temperature-dependent translation of a novel virus-encoded transforming protein, P100gag-mos. CdCl2 also induced frameshift mutations but, in one case, induced a mutation which may result from a deletion of about 300 bases within the MuSVts110 DNA.  相似文献   

20.
The sequence relations between Kirsten murine sarcoma virus (Ki-SV), Harvey murine sarcoma virus (Ha-SV), and a rat endogenous 30S RNA were studied by electron microscope heteroduplex analysis. The sequence relationships between the sarcoma viruses and their respective parental murine leukemia viruses (Kirsten and Moloney murine leukemia viruses), as well as between the two murine leukemia viruses, were also studied. The only observed nonhomology feature of the Kirsten murine leukemia virus/Moloney murine leukemia virus heteroduplexes was a substitution loop with two arms of equal length extending from 1.80 +/- 0.18 kilobases (kb) to 2.65 +/- 0.27 kb from the 3' end of the RNA. It is believed that this feature lies in the env gene region of the viral genomes. The Ha-SV and Moloney murine leukemia virus genomes (respective lengths, 6.0 and 9.0 kb) were homologous in a 1.0 +/- 0.05-kb region at the 3' end and possibly over a 200-nucleotide region at the 5' ends; otherwise, they were nonhomologous. Ha-SV and Ki-SV (length, 7.5 kb) were homologous in the first 4.36 +/- 0.37-kb region from the 3' end and in a 0.70 +/- 0.15-kb region at the 5' end. In between, there was a nonhomology region, possibly containing a short (0.23-kb) region of partial or total homology. The heteroduplex analysis between rat endogenous 30S RNA and Ki-SV shows that there are mixed regions of sequence homology and nonhomology at both the 5' and 3' ends. However, there is a large (4-kb) region of homology between Ki-SV and the rat 30S RNA in the center of the genomes, with only a small nonhomology hairpin feature. These studies help to define the regions of homology between the Ha-SV and Ki-SV genomes with each other and with the rat endogenous 30S RNA. These regions may be related to the sarcoma genicity of the viruses. In particular, the 0.7-kb region of homology of Ha-SV with Ki-SV at the 5' ends may be related to the formation of a 21,000-dalton phosphoprotein in cells transformed by either virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号