首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The DNA sequences of the mercuric resistance determinants of plasmid R100 and transposon Tn501 distal to the gene (merA) coding for mercuric reductase have been determined. These 1.4 kilobase (kb) regions show 79% identity in their nucleotide sequence and in both sequences two common potential coding sequences have been identified. In R100, the end of the homologous sequence is disrupted by an 11.2 kb segment of DNA which encodes the sulfonamide and streptomycin resistance determinants of Tn21. This insert contains terminal inverted repeat sequences and is flanked by a 5 base pair (bp) direct repeat. The first of the common potential coding sequences is likely to be that of the merD gene. Induction experiments and mercury volatilization studies demonstrate an enhancing but non-essential role for these merA-distal coding sequences in mercury resistance and volatilization. The potential coding sequences have predicted codon usages similar to those found in other Tn501 and R100 mer genes.  相似文献   

2.
3.
Summary A family of genes expressed during early stages of shoot development were isolated fromPinus radiata. A homologue of theLEAFY/FLORICAULA flower meristem-identity genes,NEEDLY (NLY), and three MADS-box genes,PrMADS1, PrMADS2 andPrMADS3 (Pinus radiata MADS-box genes), were expressed at early stages of initiation and differentiation of reproductive (male and female) cone buds, as well as vegetative buds. Expression ofNLY in transgenicArabidopsis thaliana promoted floral fate, demonstrating that it encodes a functional ortholog of theFLORICAUL A/LEAFY genes of angiosperms.Abbreviations DSB dwarf shoot bud - LSTB long-shoot terminal bud - PCB pollen cone bud - SCB seed cone bud - LD long day - SD short day  相似文献   

4.
5.
Oh SK  Lee S  Chung E  Park JM  Yu SH  Ryu CM  Choi D 《Planta》2006,223(5):1101-1107
Plants protect themselves against pathogens using a range of response mechanisms. There are two categories of nonhost resistance: Type I, which does not result in visible cell death; and Type II, which entails localized programmed cell death (or hypersensitive response) in response to nonhost pathogens. The genes responsible for these two systems have not yet been intensively investigated at the molecular level. Using tobacco plants (Nicotiana tabacum), we compared expression of 12 defense-related genes between a Type I (Xanthomonas axonopodis pv. glycines 8ra) nonhost interaction, and two Type II (Pseudomonas syringae pv. syringae 61 and P. syringae pv. phaseolicola NPS3121) nonhost interactions, as well as those expressed during R gene-mediated resistance to Tobacco mosaic virus. In general, expression of most defense-related genes during R gene-mediated resistance was activated 48 h after challenge by TMV; the same genes were upregulated as early as 9 h after infiltration by nonhost pathogens. Surprisingly, X. axonopodis pv. glycines (Type I) elicited the same set of defense-related genes as did two pathovars of P. syringae, despite the absence of visible cell death. In two examples of Type II nonhost interactions, P. syringae pv. phaseolicola NPS3121 produced an expression profile more closely resembling that of X. axonopodis pv. glycines 8ra, than that of P. syringae pv. syringae 61. These results suggest that Type I nonhost resistance may act as a mechanism providing a more specific and active defense response against a broad range of potential pathogens.  相似文献   

6.
Fusion genes have been reported as a means of enabling the development of novel or enhanced functions. In this report, we analyzed fusion genes in the genomes of two Helicobacter pylori strains (26695 and J99) and identified 32 fusion genes that are present as neighbours in one strain (components) and are fused in the second (composite), and vice-versa. The mechanism for each case of gene fusion is explored. 28 out of 32 genes identified as fusion products in this analysis were reported as essential genes in the previously documented transposon mutagenesis of H. pylori strain G27. This observation suggests the potential of the products of fusion genes as putative microbial drug targets. These results underscore the utility of bacterial genomic sequence comparisons for understanding gene evolution and for in silico drug target identification in the post-genomic era. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
Genetic analysis of the 8D3;8D8-9 segment of the Drosophila melanogaster X chromosome has assigned seven complementation groups to this region, three of which are new. A Polycomb group (Pc-G) gene, multi sex combs (mxc), is characterized and mutant alleles are described. Besides common homeotic transformations characteristic of Pc-G mutants that mimic the ectopic gain of function of BX-C and ANT-C genes, mxc mutants show other phenotypes: they zygotically mimic, in males and females, the characteristic lack of germ line seen in progeny of some maternal effect mutants of the so-called posterior group (the grandchildless phenotype). Loss of normal mxc function can promote uncontrolled malignant growth which indicates a possible relationship between Pc-G genes and tumour suppressor genes. We propose that gain-of-function of genes normally repressed by the wild-type mxc product could, in mxc mutants, give rise to an incoherent signal which would be devoid of meaning in normal development. Such a signal could divert somatic and germ line developmental pathways, provoke the loss of cell affinities, but allow or promote growth.  相似文献   

8.
Apart from the ability to nodulate legumes, fast-and slow-growing rhizobia have few bacteriological traits in common. Given that there is only one pathway to nodulation, DNA sequences conserved in fast- and slow-growing organisms that nodulate the same host should be strongly enriched in infectivity genes. We tested this hypothesis with seven fast-growing and five slow-growing strains that produced responses varying from fully effective nodulation through various ineffective associations to non-nodulation on four different hosts (Lotus pedunculatus, Lupinus nanus, Macroptilium atropurpureum, and Vigna unguiculata). When restriction enzyme digested total DNA from 10 of the strains was separately hybridized with nick-translated plasmid DNA isolated from 4 fast-growing strains, variable but significant homologies were found with all 10 strains. Part of this homology was shown to be associated with the nifKDH genes for nitrogenase and part with putative nodulation genes carried on pC2, a cosmid clone containing a 37 kbp region of the large sym plasmid present in the fast-growing broad-host range Rhizobium sp. strain NGR234. Analysis of the extent of homology between the plasmids of 3 fastgrowing strains (NGR234, TAL 996 and UMKL 19) able to effectively nodulate Vigna unguiculata showed them to have homologous DNA fragments totalling 47 kbp. This core homology represents less than 12% of the total coding capacity of the sym plasmid present in each of these strains.Abbreviations Sym symbiotic sequences/plasmids - nod genes required for nodulation - nod putative nod genes - nif genes required for the synthesis of the enzyme nitrogenase  相似文献   

9.
10.
11.
Leafy (LFY) and LFY-like genes control the initiation of floral meristems and regulate MADS-box genes in higher plants. The Cucumber-FLO-LFY (CFL) gene, a LFY homolog in Cucumis sativus L. is expressed in the primordia, floral primordia, and each whirl of floral organs during the early stage of flower development. In this study, functions of CFL in flower development were investigated by overexpressing the CFL gene in gloxinia (Sinningia speciosa). Our results show that constitutive CFL overexpression significantly promote early flowering without gibberellin (GA(3)) supplement, suggesting that CFL can serve functionally as a LFY homolog in gloxinia. Moreover, GA(3) and abscisic acid (ABA) treatments could modulate the expression of MADS-box genes in opposite directions. GA(3) resembles the overexpression of CFL in the expression of MADS-box genes and the regeneration of floral buds, but ABA inhibits the expression of MADS-box genes and flower development. These results suggest that CFL and downstream MADS-box genes involved in flower development are regulated by GA(3) and ABA.  相似文献   

12.
In a recent comparative study on neurogenesis in the diplopod Glomeris marginata we have shown that the millipede and the spider share several features that cannot be found in homologous form in insects and crustaceans. The most distinctive difference is that groups of neural precursors are singled out from the neuroectoderm of the spider and the diplopod, rather than individual cells (i.e. neuroblasts) as in insects or crustacean. This observation constitutes the first morphological indication for a close myriapod/chelicerate relationship that has otherwise only been suggested by molecular phylogenetic analysis. To see whether the pattern of neurogenesis described for the diplopod is representative for myriapods, we analysed neurogenesis in the basal chilopod Lithobius forficatus. We show here that groups of cells invaginate from the chilopod neuroectoderm at strikingly similar positions as the invaginating cell groups of the diplopod and the spider. Furthermore, the expression patterns of the proneural and neurogenic genes reveal more similarities to the chelicerate and the diplopod than to insects. Thus, chelicerates and myriapods share the developmental mechanism for neurogenesis, either because they are true sister groups, or because this reflects the ancestral state of neurogenesis in arthropods.Edited by P. Simpson  相似文献   

13.
14.
We mapped two loci for ADP-ribosylation factor homologues (ARF1, ARF2) and two loci for cysteine proteinase inhibitors (oryzacystatin-I and -II: OCI, OCII) by linkage analysis of restriction fragment length polymorphism loci in rice (Oryza sativa L.) genomic DNAs using their cDNAs as probes.Oc-1 andArf-2 were found to be closely located to each other on chromosome 1, whileOc-2 andArf-1,both found on chromosome 5, were also located close to each other. The map distances are about 2 cM in both pairs. In each chromosome, theArf locus was located about 27 cM from that of the aldolase gene (Ald-2 in chromosome 1 andAld-1 in chromosome 5). These three genes are in the same order,Ald-Arf-Oc, but in opposite orientations relative to the distal ends of the linkage group. The presence of two sets of three linked genes on chromosomes 1 and 5 strongly suggests a structural similarity of the blocks of the two chromosomes, which probably reflects duplication of the segment. A recent investigation by other workers has shown that these rice blocks correspond to two regions in maize chromosomes 8 and 6, that have previously been shown to share many duplicated nucleotide sequences. It is therefore very likely that the duplication of the region occurred before the divergence of rice and maize during the evolution of the subfamilies of the grasses (Gramineae). In view of a recently discovered possible structural similarity between the small GTP-binding protein superfamily, which includesArf andras proteins, and the cystatin family, the close linkage ofOc andArf loci found in the present study suggests a possible cluster of genes related to the small GTP-binding proteins.  相似文献   

15.
Nisin production in continuous cultures of bioengineered Lactococcus lactis strains that incorporate additional immunity and regulation genes was studied. Highest nisin activities were observed at 0.2 h–1 dilution rate and 12.5 g l–1 fructose concentration for all strains. Recombinant strains were able to produce greater amounts of nisin at dilution rates below 0.3 h−1 compared to the control strain. However, this significant difference disappeared at dilution rates of 0.4 and 0.5 h–1. For the strains LL27, LAC338, LAC339, and LAC340, optimum conditions for nisin production were determined to be at 0.29, 0.26, 0.27, and 0.27 h–1 dilution rates and 11.95, 12.01, 11.63, and 12.50 g l–1 fructose concentrations, respectively. The highest nisin productivity, 496 IU ml–1 h–1, was achieved with LAC339. The results of this study suggest that low dilution rates stabilize the high specific nisin productivity of the bioengineered strains in continuous fermentation. Moreover, response surface methodology analysis showed that regulation genes yielded high nisin productivity at wide ranges of dilution rates and fructose concentrations.  相似文献   

16.
17.
18.
Summary Rhizobium and Bradyrhizobium bacteria gain intercellular entry into roots of the non-legume Parasponia andersonii by stimulating localized sites of cell division which disrupt the epidermis. Infection threads are then initiated from intercellular colonies within the cortex. Infection via the information of infection threads within curled root hairs, which commonly occurs in legumes, was not observed in Parasponia. The conserved nodulation genes nodABC, necded for the curling of legume root hairs, were not essential for the initiation of infection, however, these genes were required for Parasponia prenodule development. In contrast, the nodD gene of Rhizobium strain NGR234 was essential for the initiation of infection. In addition, successful infection required not only nodD but a region of the NGR234 symbiotic plasmid which is not needed for the nodulation of legumes. Agrobacterium tumefaciens carrying this Parasponia specific region, as well as legume nod genes, was able to form nodules on Parasponia which reached an advanced stage of development.  相似文献   

19.
Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria.  相似文献   

20.
The potential to genetically dissect tumorigenesis provides the major reason to study this process in the fruit flyDrosophila. Over the last 30 years genetic analysis has identified some 55 genes in which recessive mutations cause the appearance of specific tumours during development in tissues such as the imaginal discs, the brain hemispheres, the hematopoietic organs or the gonads, Since the normal allele acts dominantly over the mutated allele, these genes are designated as tumour suppressor genes. The estimate of the number of genes that can be mutated to tumour formation may be, however, much higher ranging between I00 to 200. The challenge before this field is how best to identify these genes and elucidate their function. Current molecular procedures, such as mutagenesis mediated by P-element transposon, provide new ways for tagging any gene of interest inDrosophila and thus for cloning it rapidly. Function of the gene product can be inferred by comparing its amino acid sequence with sequences of proteins with known function or can be determined by histochemical and biochemical investigations. Progress in the understanding of tumour suppression inDrosophila is most advanced in the case of genes regulating cell growth in imaginal discs. The imaginal discs are small groups of cells displaying a strong apical-basal polarity and form folded sacs of epithelia which grow throughout the larval life and give rise to the adult tegument during metamorphosis. Tumour suppressor genes regulating cell growth of imaginal discs, such as thelethal(2)giant larvae (l(2)g1),lethal(1)discs large-1 andexpanded genes, were found to encode proteins localized in domains of cell to cell contact on the plasma membrane and were thus thought to maintain cell adhesion. However, recent studies of l(2)gl have revealed that the l(2)gl protein is a component of the normal cytoskeleton which can participates to the cytoskeletal matrix underlaying the plasma membrane. These findings indicate that the changes in cell shape and the loss of apical-basal polarity in imaginal disc cells result primarily from alterations in the cytoskeleton structure. Furthermore the neoplastic growth of the mutated cells may be caused by the disorganization of an intracellular communication system that ultimately controls cell proliferation and/or cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号