首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diet of adult and juvenile Weddell seals (Leptonychotes weddellii) in McMurdo Sound, Antarctica, was determined from both scat and stable isotope analyses, to ascertain if foraging behavior varied with age, season, or diving pattern. Scats were collected over 6 years and recovered hard parts identified. Stable carbon and nitrogen isotope values were determined for seal blood samples and potential prey items and used to identify primary prey species and assess trophic interactions. Pleuragramma antarcticum remains were recovered from between 70 and 100% of the scats, and there was little evidence for inter-annual or age-specific variation in foraging behavior. However, stable isotope and dive data analyses indicated that while most seals foraged predominantly on pelagic fish and squid, some juveniles concentrated on shallow benthic Trematomus spp. Combining these three methods permitted firm conclusions about diet and foraging behavior to be drawn. Received: 10 June 1997 / Accepted: 8 November 1997  相似文献   

2.
The focus of this study was the distribution of adult female Weddell seals during winter at the Vestfold Hills. Satellite tracking of Weddell seals had never been done before at this location. Hence, this was a pilot study to evaluate the following methods. We attached satellite transmitters to the lower back, where there was least potential to change the seals’ behaviour or to damage instruments on the ice. Location data were obtained only where the seals hauled out, not necessarily where they were feeding. All locations were within the area of fast-ice that was associated with the Vestfold Hills. There were gaps of up to 30 days in the location data sets. Each instrument (n=3) remained attached and functioning for ca. 6 months. During that time, two of the three seals hauled out within small areas adjacent to, or nearby, open water. The same seals hauled out sporadically. We inferred that these seals foraged offshore whilst returning to fast-ice to rest. If Weddell seals forage beneath dynamic ice but return to stable ice as their preferred resting substrate, then evidence of haulout sites will always be a biased measure of foraging range. Tracking seals in the water may be possible using alternative placement of transmitters. However, there is potential for instruments to interfere with movement (breathing and prey capture). For this reason, we recommend a combination of sensors, diet and tracking haulout sites to research winter foraging.  相似文献   

3.
Currently, there are three recognized ecotypes (or species) of killer whales (Orcinus orca) in Antarctic waters, including type B, a putative prey specialist on seals, which we refer to as “pack ice killer whale” (PI killer whale). During January 2009, we spent a total of 75.4 h observing three different groups of PI killer whales hunting off the western Antarctic Peninsula. Observed prey taken included 16 seals and 1 Antarctic minke whale (Balaenoptera bonaerensis). Weddell seals (Leptonychotes weddellii) were taken almost exclusively (14/15 identified seal kills), despite the fact that they represented only 15% of 365 seals identified on ice floes; the whales entirely avoided taking crabeater seals (Lobodon carcinophaga; 82% relative abundance) and leopard seals (Hydrurga leptonyx; 3%). Of the seals killed, the whales took 12/14 (86%) off ice floes using a cooperative wave‐washing behavior; they produced 120 waves during 22 separate attacks and successfully took 12/16 (75%) of the Weddell seals attacked. The mean number of waves produced per successful attack was 4.1 (range 1–10) and the mean attack duration was 30.4 min (range 15–62). Seal remains that we examined from one of the kills provided evidence of meticulous postmortem prey processing perhaps best termed “butchering.”  相似文献   

4.
The whole-body burdens and concentrations of ZDDT (the sum of p,p,′-DDE and p,p′-DDT) and PCBs in the Weddell seal, Leptonychotes weddelli, caught near Syowa Station, Antarctica, were determined by detailed biometric measurements of their organs and tissues and analyses of ZDDT and PCBs in them. The concentration levels of ZDDT and PCBs in Weddell seals were much lower than those in various species of marine mammals from other oceans. The low levels may be attributable to the low concentration of these chemicals in the food of Weddell seals and in the sea water under antarctic fast ice. However, the concentration ratio of ZDDT between the food organisms of seals and sea water under antarctic fast ice was higher than those of other ocean ecosystems.  相似文献   

5.
Ground counts during 1959–1968 compared with counts using high resolution (0.6 m2) satellite imagery during 2008–2012 indicated many fewer Weddell seals (Leptonychotes weddellii) at two major molting areas in the western Ross Sea: Edisto Inlet‐Moubray Bay, northern Victoria Land, and McMurdo Sound, southern Victoria Land. Breeding seals have largely disappeared from Edisto‐Moubray, though the breeding population in McMurdo Sound appears to have recovered from harvest in the 1960s. The timing of decline, or perhaps spreading (lower numbers of seals in more places), is unknown but appears unrelated to changes in sea ice conditions. We analyzed both historic and satellite‐derived ice data confirming a large expansion of pack ice mostly offshore of the Ross Sea, and not over the continental shelf (main Weddell seal habitat), and a thinning of fast ice along Victoria Land (conceivably beneficial to seals). Timing of fast ice presence and extent in coves and bays along Victoria Land, remains the same. The reduction in numbers is consistent with an altered food web, the reasons for which are complex. In the context of a recent industrial fishery targeting a seal prey species, a large‐scale seal monitoring program is required to increase understanding of seal population changes.  相似文献   

6.
The only apex predators that live year-round at high latitudesof the Ross Sea are the Weddell seal and emperor penguin. Theseasonal distribution, foraging depths, and diet of these twospecies appear to overlap. What makes it possible for emperorpenguins and Weddell seals to co-exist at high latitude throughoutthe winter when other marine tetrapods apparently cannot? Bothspecies have similar adaptations for exploitation of the deep-waterhabitat, forage on the same species, and routinely make longand deep dives. Yet, despite these similarities, there is probablylittle trophic overlap between the adults of both species dueto geographical and seasonal differences in habitat use. Forexample, during the winter months while female emperor penguinsare ranging widely in the pack ice, adult seals are foragingand fattening for the upcoming summer fast, literally beneaththe feet of the male penguins. However, there is more extensiveoverlap between juvenile seals and adult penguins, and shiftsin prey abundance and/or distribution would likely affect thesetwo groups similarly. In contrast, juvenile penguins appearto avoid inter- and intra- specific competition by leaving theRoss Sea once they molt.  相似文献   

7.
Two adult female leopard seals (Hydrurga leptonyx) were tagged with satellite-linked dive recorders off Queen Maud Land, Antarctica, just after moulting in mid-February. The transmitters transmitted for 80 and 220 days, respectively. Both seals remained within the pack ice relatively close to the Antarctic Continent until early May, when contact was lost with one seal. The one remaining seal then migrated north, to the east side of the South Sandwich Islands in 3 weeks, whereafter it headed east, until contact was lost at 55°S in early September. From mid-May to late September this animal always stayed close to the edge of the pack ice. Both seals made mostly short (<5 min) dives to depths of 10–50 m and only occasionally dove deeper than 200 m, the deepest dive recorded being 304 m. A nocturnal diving pattern was evident in autumn and early winter, while day-time diving prevailed in mid-winter. Haul out probability was highest at mid-day (about 40% in late February and more than 80% in March and April). From May till September the remaining animal mainly stayed at sea, in the vicinity of the pack ice, with only occasional haul outs. These data suggest that a portion of the adult leopard seals may spend the winter mainly in open water, off the edge of the pack ice, where they primarily hunt near the surface. In that case, it is likely that krill (Euphausia superba), as well as penguins, young crabeater seals (Lobodon carcinophaga) and a variety of fish are important prey items.  相似文献   

8.
Continued Arctic warming and sea‐ice loss will have important implications for the conservation of ringed seals, a highly ice‐dependent species. A better understanding of their spatial ecology will help characterize emerging ecological trends and inform management decisions. We deployed satellite transmitters on ringed seals in the summers of 2011, 2014, and 2016 near Utqia?vik (formerly Barrow), Alaska, to monitor their movements, diving, and haul‐out behavior. We present analyses of tracking and dive data provided by 17 seals that were tracked until at least January of the following year. Seals mostly ranged north of Utqia?vik in the Beaufort and Chukchi Seas during summer before moving into the southern Chukchi and Bering Seas during winter. In all seasons, ringed seals occupied a diversity of habitats and spatial distributions, from near shore and localized, to far offshore and wide‐ranging in drifting sea ice. Continental shelf waters were occupied for >96% of tracking days, during which repetitive diving (suggestive of foraging) primarily to the seafloor was the most frequent activity. From mid‐summer to early fall, 12 seals made ~1‐week forays off‐shelf to the deep Arctic Basin, most reaching the retreating pack‐ice, where they spent most of their time hauled out. Diel activity patterns suggested greater allocation of foraging efforts to midday hours. Haul‐out patterns were complementary, occurring mostly at night until April‐May when midday hours were preferred. Ringed seals captured in 2011—concurrent with an unusual mortality event that affected all ice‐seal species—differed morphologically and behaviorally from seals captured in other years. Speculations about the physiology of molting and its role in energetics, habitat use, and behavior are discussed; along with possible evidence of purported ringed seal ecotypes.  相似文献   

9.
Between 1993 and 1995, the diving behavior and movement patterns of 23 weaned Weddell seal pups (Leptonychotes weddellii) were tracked in the Ross Sea. Antarctica, using satellite-linked time-depth recorders. Regression analyses revealed that for seals of between 8 and 27 weeks old, age was poorly correlated with the dive depth, duration, or frequency. However, changes in dive parameters suggested that Weddell seal pups were attempting to maximize dive time, but the manner in which this was done depended on age and time of day. Movement patterns indicated that most Weddell seal pups left their natal area by the end of February, and traveled north along the Antarctic continent coastline. Several individuals returned to McMurdo Sound, but others were last located more than 400 km from McMurdo. Routes followed suggest that pups can use the pack ice habitat, but prefer to remain closer to the coastline than do adults. Accepted: 21 July 1998  相似文献   

10.
We sequenced a portion ( c . 475 bp) of the mitochondrial control region of three species of Antarctic phocid carnivores (Weddell seal, Leptonychotes weddellii , N  = 181; crabeater seal, Lobodon carcinophaga , N  = 143; and Ross seal, Ommatophoca rossii , N  = 41) that live seasonally or permanently in the fast ice and seasonal pack ice of the western Amundsen and Ross seas of western Antarctica. We resolved 251 haplotypes with a haplotype diversity of 0.98 to 0.99. Bayesian estimates of Θ from the program LAMARC ranged from 0.075 for Weddell seals to 0.576 for crabeater seals. We used the values of theta to estimate female effective population sizes ( NEF ), which were 40 700 to 63 000 for Weddell seals, 44 400 to 97 800 for Ross seals, and 358 500 to 531 900 for crabeater seals. We used mismatch distributions to test for historical population size expansions. Weddell seals and crabeater seals had significant, unimodal mean pairwise difference distributions ( P  = 0.56 and 0.36, respectively), suggesting that their populations expanded suddenly around 731 000 years ago (Weddell seals) and around 1.6 million years ago (crabeater seals). Both of these expansions occurred during times of intensified glaciations and may have been fostered by expanding pack ice habitat.  相似文献   

11.
Domoic acid (DA) and saxitoxin (STX)-producing algae are present in Alaskan seas, presenting exposure risks to marine mammals that may be increasing due to climate change. To investigate potential increases in exposure risks to four pagophilic ice seal species (Erignathus barbatus, bearded seals; Pusa hispida, ringed seals; Phoca largha, spotted seals; and Histriophoca fasciata, ribbon seals), this study analyzed samples from 998 seals harvested for subsistence purposes in western and northern Alaska during 2005–2019 for DA and STX. Both toxins were detected in bearded, ringed, and spotted seals, though no clinical signs of acute neurotoxicity were reported in harvested seals. Bearded seals had the highest prevalence of each toxin, followed by ringed seals. Bearded seal stomach content samples from the Bering Sea showed a significant increase in DA prevalence with time (logistic regression, p = .004). These findings are consistent with predicted northward expansion of DA-producing algae. A comparison of paired samples taken from the stomachs and colons of 15 seals found that colon content consistently had higher concentrations of both toxins. Collectively, these results suggest that ice seals, particularly bearded seals (benthic foraging specialists), are suitable sentinels for monitoring HAB prevalence in the Pacific Arctic and subarctic.  相似文献   

12.
The Weddell seal population in Erebus Bay, Antarctica, represents one of the best-studied marine mammal populations in the world, providing an ideal test for the efficacy of satellite imagery to inform about seal abundance and population trends. Using high-resolution (0.6 m) satellite imagery, we compared counts from imagery to ground counts of adult Weddell seals and determined temporal trends in Erebus Bay during November 2004–2006 and 2009, and December 2007. Seals were counted from QuickBird-2 and WorldView-1 images, and these counts were compared with ground counts at overlapping locations within Erebus Bay during the same time. Counts were compared across years and within individual haul-out locations. We counted a total of 1,000 adult Weddell seals from five images across all years (for a total of 21 satellite-to-ground count comparisons), approximately 72% of the total counted on the ground at overlapping locations. We accurately detected an increase in abundance during 2004–2009. There was a strong, positive correlation (r = 0.98, df = 3, P < 0.003) between ground counts and counts derived from the imagery. The correlation between counts at individual haul-out locations was also strong (r = 0.80, df = 19, P < 0.001). Detection rates ranged from 30 to 88%. Overall, our results showed the utility of high-resolution imagery to provide an accurate way to detect the presence and variation in abundance of Weddell seals. Our methods may be applied to other species in polar regions, such as walruses or polar bears, particularly in areas where little is known about population status.  相似文献   

13.
Weddell seal vocalizations from Davis Station showed similarities to those from McMurdo Sound and Palmer Peninsula, but none were identical. One vocalization, DD1, was unique to Davis Station. At all sites trills, or territorial defense calls, were the most common and had more types than other calls. Chugs, an aggressive sound, were common at all sites. Weddell seal calls from Davis Station showed similarities to sounds from McMurdo by sharing the use of prefixes and suffixes. Sounds from Davis Station shared the use of both ascending and descending trills and whistles with calls from Palmer Peninsula.Commonalities in underwater vocalizations may indicate the degree of mixing between breeding populations, in which case, Weddell seals in the Davis area probably are from a breeding population distinct from those at either McMurdo Sound or Palmer Peninsula.  相似文献   

14.
The morphology of the principal sections of the gastrointestinal system of two Antarctic seals with different dietary habits, namely, the Weddell seal (Leptonychotes weddellii) and the crabeater seal (Lobodon carcinophagus), has been investigated. Histologically examined by light microscopy, the tissue layers of the gastrointestinal tract of both seals are almost identical to those observed in most other mammals and no major differences in principle organization could be found between the two seal species. The ultrastructure of the gastric and intestinal epithelial cells has been examined and is also closely comparable to that of these cells in other mammals; however, Paneth cells have not been found in our material. In general, therefore, adaptations of the gastrointestinal tract to the aquatic environment or the diet are not obvious at the morphological levels of organization studied. Histochemical differences are found between the two closely related species; mucins of the surface epithelium in the stomach of Weddell seals are highly sulfated, while those in the crabeater seal are not. Mucous neck cells in Weddell seals contain acid mucosubstances, while those of crabeater seals contain neutral ones. Goblet cells in the small and large intestine in Weddell seals contain both neutral and acid mucosubstances. Both mucin types are detected in the crabeater seal; however, the mucins of the colon in the crabeater seal are more highly sulfated than those in the Weddell seal. The ratio of globet cells to enterocytes in the large intestine of crabeater seals is higher than that in Weddell seals. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Adult Weddell seals (Leptonychotes weddellii) exhibit site fidelity to where they first breed but juveniles, and perhaps transient adult males, may disperse from their natal location. If there is mixing between adjacent breeding groups, we would expect that common vocalizations would exhibit clinal patterns. Underwater Trill vocalizations of male Weddell seals at Mawson, Davis, Casey, McMurdo Sound, Neumayer and Drescher Inlet separated by ca. 500 to >9,000 km, were examined for evidence of clinal variation. Trills are only emitted by males and have a known territorial defense function. Trills from Davis and Mawson, ca. 630 km apart, were distinct from each other and exhibited the greatest number of unique frequency contour patterns. The acoustic features (duration, waveform, frequency contour) of Trills from Neumayer and Drescher Inlet, ca. 500 km apart, were more distinct from each other than they were from the other four locations. General Discriminant Analysis and Classification Tree Analysis correctly classified 65.8 and 76.9% of the Trills to the correct location. The classification errors assigned more locations to sites >630 km away than to nearest neighbours. Weddell seal Trills exhibit geographic variation but there is no evidence of a clinal pattern. This suggests that males remain close to single breeding areas throughout their lifetime.  相似文献   

16.
Under current climate trends, spring ice breakup in Hudson Bay is advancing rapidly, leaving polar bears (Ursus maritimus) less time to hunt seals during the spring when they accumulate the majority of their annual fat reserves. For this reason, foods that polar bears consume during the ice‐free season may become increasingly important in alleviating nutritional stress from lost seal hunting opportunities. Defining how the terrestrial diet might have changed since the onset of rapid climate change is an important step in understanding how polar bears may be reacting to climate change. We characterized the current terrestrial diet of polar bears in western Hudson Bay by evaluating the contents of passively sampled scat and comparing it to a similar study conducted 40 years ago. While the two terrestrial diets broadly overlap, polar bears currently appear to be exploiting increasingly abundant resources such as caribou (Rangifer tarandus) and snow geese (Chen caerulescens caerulescens) and newly available resources such as eggs. This opportunistic shift is similar to the diet mixing strategy common among other Arctic predators and bear species. We discuss whether the observed diet shift is solely a response to a nutritional stress or is an expression of plastic foraging behavior.  相似文献   

17.
We analyzed eight nuclear microsatellite loci in three species of Antarctic seals; Weddell seal (Leptonychotes weddellii; mean N = 163), crabeater seal (Lobodon carcinophaga; 138) and Ross seal (Ommatophoca rossii; 35). We estimated genetic diversity (Θ) and effective population size (N E) for each species. Autosomal microsatellite based N E estimates were 151,200 for Weddell seals, 880,200 for crabeater seals, and 254,500 for Ross seals. We screened one X-linked microsatellite (Lw18), which yielded similar N E estimates to the autosomal loci for all species except the Ross seals, where it was considerably larger (~103 times). Microsatellite N E estimates were comparable with previously published N E estimates from mitochondrial DNA, but both are substantially lower than direct estimates of population size in all species except the Ross seals. The ratio of maternally versus biparentally derived estimates of N E for Ross seals was not consistent with the hypothesis that they are a polygynous species. We found no sign of a recent, sustained genetic bottleneck in any of the species.  相似文献   

18.

Background  

The metabolic transformation that changes Weddell seal pups born on land into aquatic animals is not only interesting for the study of general biology, but it also provides a model for the acquired and congenital muscle disorders which are associated with oxygen metabolism in skeletal muscle. However, the analysis of gene expression in seals is hampered by the lack of specific microarrays and the very limited annotation of known Weddell seal (Leptonychotes weddellii) genes.  相似文献   

19.
Biuw M  Nøst OA  Stien A  Zhou Q  Lydersen C  Kovacs KM 《PloS one》2010,5(11):e13816
Weddell Sea hydrography and circulation is driven by influx of Circumpolar Deep Water (CDW) from the Antarctic Circumpolar Current (ACC) at its eastern margin. Entrainment and upwelling of this high-nutrient, oxygen-depleted water mass within the Weddell Gyre also supports the mesopelagic ecosystem within the gyre and the rich benthic community along the Antarctic shelf. We used Conductivity-Temperature-Depth Satellite Relay Data Loggers (CTD-SRDLs) to examine the importance of hydrographic variability, ice cover and season on the movements and diving behavior of southern elephant seals in the eastern Weddell Sea region during their overwinter feeding trips from Bouvetøya. We developed a model describing diving depth as a function of local time of day to account for diel variation in diving behavior. Seals feeding in pelagic ice-free waters during the summer months displayed clear diel variation, with daytime dives reaching 500-1500 m and night-time targeting of the subsurface temperature and salinity maxima characteristic of CDW around 150–300 meters. This pattern was especially clear in the Weddell Cold and Warm Regimes within the gyre, occurred in the ACC, but was absent at the Dronning Maud Land shelf region where seals fed benthically. Diel variation was almost absent in pelagic feeding areas covered by winter sea ice, where seals targeted deep layers around 500–700 meters. Thus, elephant seals appear to switch between feeding strategies when moving between oceanic regimes or in response to seasonal environmental conditions. While they are on the shelf, they exploit the locally-rich benthic ecosystem, while diel patterns in pelagic waters in summer are probably a response to strong vertical migration patterns within the copepod-based pelagic food web. Behavioral flexibility that permits such switching between different feeding strategies may have important consequences regarding the potential for southern elephant seals to adapt to variability or systematic changes in their environment resulting from climate change.  相似文献   

20.
Summary Stomach and intestine samples from 21 adult Weddell seals were used to study the diet of these seals from the eastern and southern Weddell Sea coast from January to February 1983 and 1985. Fish occurred in all seals, squid in five, octopods in three and Euphausia crystallorophias in one seal. Pleuragramma antarcticum was the predominant fish in the diet, constituting 61.1% of otoliths in 1983 samples and 93.8% in 1985. Aethotaxis mitopteryx, Dissostichus mawsoni, unidentified Trematomus spp. and channichthyids were also recorded. Size and wet weight of P. antarcticum were calculated from uneroded otoliths, found in 6 seal stomachs with liquid food pulp, collected during early morning hours in 1985. Size distribution of P. antarcticum from individual seals was reasonably constant, ranging between 5.0 and 22.0 cm SL; adult fish from about 14.0 to 19.0 cm SL predominated. P. antarcticum in seals from the southern area had a larger median size (16.5 cm SL), than those from further east (15.5 cm SL). Calculated wet weights of all P. antarcticum from individual seal stomachs ranged between 4.7 and 16.9 kg the mean was 12.8 kg. Comparisons with net-hauls from the southern Gould Bay suggest that Weddell seals feed mainly in deeper water layers (>400 m) where adult P. antarcticum occur at higher densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号