首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

2.
3.
Investigating plant–pollinator interactions and pollen dispersal are particularly relevant for understanding processes ensuring long‐term viability of fragmented plant populations. Pollen dispersal patterns may vary strongly, even between similar congeneric species, depending on the mating system, pollinator assemblages and floral traits. We investigated pollen dispersal and fruit production in a population of Vaccinium oxycoccos, an insect‐pollinated shrub, and compared the pollen dispersal pattern with a co‐flowering, sympatric congener, V. uliginosum. We examined whether they share pollinators (through interspecific fluorescent dye transfers) and may differently attract pollinators, by comparing their floral colour as perceived by insects. Fluorescent dyes were mainly dispersed over short distances (80% within 40.4 m (max. 94.5 m) for V. oxycoccos and 3.0 m (max. 141.3 m) for V. uliginosum). Dye dispersal in V. oxycoccos was not significantly affected by plant area, floral display or the proximity to V. uliginosum plants. Interspecific dye transfers were observed, indicating pollinator sharing. The significantly lower dye deposition on V. oxycoccos stigmas suggests lower visitation rates by pollinators, despite higher flower density and local abundance. The spectral reflectance analysis indicates that bees are unlikely to be able to discriminate between the two species based on floral colour alone. Fruit production increased with increasing floral display, but was not affected by proximity to V. uliginosum plants. Our study highlights that fragmented populations of V. oxycoccos, when sympatric with co‐flowering V. uliginosum, might incur increased competition for the shared pollinators in the case of pollination disruption, which might then reduce outcrossed seed set.  相似文献   

4.
Aim We estimated the patterns of seed deposition provided by the eyed lizard, Timon lepidus, and evaluated whether these patterns can be generalized across plant species with different traits (fruit and seed size) and spatial distributions. Location Monteagudo Island, Atlantic Islands National Park (north‐western Spain). Methods We radio‐tracked seven lizards for 14 days and estimated their home ranges using fixed kernels. We also geo‐referenced all fruit‐bearing individuals of four plant species dispersed by eyed lizards in the study area (Corema album, Osyris alba, Rubus ulmifolius and Tamus communis), measured the passage time of their seeds through the lizard gut, and estimated seed predation in four habitats (bare sand, grassland, shrub and gorse). Seed dispersal kernels were estimated using a combination of these data and were combined with seed predation probability maps to incorporate post‐dispersal seed fate (‘seed survival kernels’). Results Median seed gut‐passage times were around 52–98 h, with maximum values up to 250 h. Lizards achieved maximum displacement in their home ranges within 24–48 h. Seed predation was high (80–100% of seeds in 2 months), particularly under Corema shrub and gorse. Seed dispersal kernels showed a common pattern, with two areas of preferential seed deposition, but the importance of these varied among plant species. Interspecific differences among dispersal kernels were strongly reduced by post‐dispersal seed predation; hence, seed survival kernels of the different plant species showed high auto‐ and pairwise‐correlations at small distances (< 50 m). As a result, survival to post‐dispersal seed predation increased with dispersal distance for O. alba and T. communis, but not for C. album. Main conclusions Seed dispersal by lizards was determined primarily by the interaction between the dispersers’ home ranges and the position of the fruit‐bearing plants. As a result, seed rain shared a common template, but showed considerable variation among species, determined by their specific spatial context. Seed predation increased the spatial coherence of the seed rain of the different species, but also resulted in contrasting relationships between seed survival and dispersal distance, which may be of importance for the demographic and evolutionary processes of the plants.  相似文献   

5.
Fine‐scale spatial genetic structure is increasingly recognized as an important factor in the studies of tropical forest trees as it influences genetic diversity of local populations. The biologic mechanisms that generate fine‐scale spatial genetic structure are not fully understood. We studied fine‐scale spatial genetic structure in ten coexisting dipterocarp tree species in a Bornean rain forest using microsatellite markers. Six of the ten species showed statistically significant fine‐scale spatial genetic structure. Fine‐scale spatial genetic structure was stronger at smaller spatial scales (≤ 100 m) than at larger spatial scales (> 100 m) for each species. Multiple regression analysis suggested that seed dispersal distance was important at the smaller spatial scale. At the larger scale (> 100 m) and over the entire sample range (0–1000 m), pollinators and spatial distribution of adult trees were more important determinants of fine‐scale spatial genetic structure. Fine‐scale spatial genetic structure was stronger in species pollinated by less mobile small beetles than in species pollinated by the more mobile giant honeybee (Apis dorsata). It was also stronger in species where adult tree distributions were more clumped. The hypothesized mechanisms underlying the negative correlation between clump size and fine‐scale spatial genetic structure were a large overlap among seed shadows and genetic drift within clumped species.  相似文献   

6.
Despite the importance of seed dispersal in a plant's life cycle, global patterns in seed dispersal distance have seldom been studied. This paper presents the first geographically and taxonomically broad quantification of the latitudinal gradient in seed dispersal distance. Although there is substantial variation in the seed dispersal distances of different species at a given latitude, seeds disperse on average more than an order of magnitude further at the equator than towards the poles. This pattern is partially explained by plant life‐history traits that simultaneously associate with seed dispersal distance and latitude, including dispersal mode and plant height. The extended seed shadow of tropical plants could increase the distance between conspecific individuals. This could facilitate species coexistence and contribute to the maintenance of high plant diversity in tropical communities. The latitudinal gradient in dispersal distance also has implications for species’ persistence in the face of habitat fragmentation and climate change.  相似文献   

7.
Movement patterns of animals can vary dramatically as a function of their reproductive cycle or social structure; however, little is known about how changes in the social structure of dispersers affect patterns of seed dispersal. We examined the movement patterns of the forest‐dwelling and cooperatively breeding Puff‐throated Bulbul (Alophoixus pallidus) in relation to different stages of their reproductive cycle, time of day, and group size, to determine potential impacts on the shape and scale of dispersal curves generated using a combination of gut passage time and displacement distance data. There were significant differences in dispersal distances depending on group size, season (breeding, non‐breeding), incubation (vs. other times of the year), and time of the day. The estimated median seed dispersal distance was 28 m. The median dispersal distances produced by birds in larger groups were longer than those of smaller groups (29 m vs. 25 m). During the breeding season, median dispersal distances were longer than during the non ‐ breeding season (31 m vs. 25 m), but the median dispersal distances were significantly shorter during incubation than during outside incubation (24 m vs. 28 m). The median dispersal distance produced in the early morning (30 m) was also longer than that of other times of the day (23 m late morning, 28 m early afternoon, and 26 m late afternoon). This study suggests that various aspects of an animal's behavior are likely to have significant effects on seed shadows and that this may vary significantly even among individuals of the same species.  相似文献   

8.
Recent theoretical studies suggest that the distribution of species in space has important implications for the conservation of communities in fragmented landscapes. Facilitation and dispersal are the primary mechanisms responsible for the formation of spatial patterns. Furthermore, disruptions in the formation of patterns arise after degradation, which can serve as an early indicator of stress in plant communities. Spatial dispersal ability and pattern formation were evaluated in 53 linear transects of 500 m in length within 14 fragments of natural vegetation within a matrix of abandoned crop fields in Cabo de Gata National Park, Almería, Spain. Fragments were classified into three size classes (< 300, 300–900, and > 900 ha). Fragment connectivity was quantified using the distances between fragments. Spatial dispersal ability was quantified for the 187 species recorded in the study. Species with restricted dispersal had the highest degree of long‐range spatial autocorrelation and, species that disperse by biotic vectors (e.g. vertebrates), the lowest. In addition, species most susceptible to fragmentation are vertebrate‐dispersed shrubs, which declined in abundance and was associated with loss of spatial organization in the smallest fragments. It is postulated that the positive feedback between abundance of recruitment and vertebrate visits influences the colonization and persistence of vertebrate‐dispersed shrubs, explaining its abundance in large fragments. Indeed, fragments lower than a certain threshold reduced spatial organization not only in shrubs with biotic dispersal, but also in species with abiotic dispersal (mainly wind) and with restricted dispersal. Fragments lower than a certain threshold may be vulnerable to a cascade of species loss because of reduced recruitment, establishment and patch biomass as a result of natural senescence, finally breaking up facilitative plant interactions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 935–947.  相似文献   

9.
Abstract Ant seed dispersal distances are typically small, averaging less than 1 m in published studies. Here, a new record (180 m) for ant seed dispersal distance is reported, and preliminary observations are made on the interaction between meat ants Iridomyrmex viridiaeneus Viehmeyer (Hymenoptera: Formicidae) and diaspores of the sandhill wattle, Acacia ligulata A. Cunn. ex Benth. (Fabaceae) in Kinchega National Park, New South Wales (NSW), Australia. Iridomyrmex viridiaeneus moved diaspores over distances of 7–180 m (mean 93.9 m) from the source trees to their nests, removed the arils underground and discarded the seeds over a 3000‐m2 area surrounding the nest. A germination trial determined that the viability of discarded seeds was 40%, with 80% of the viable seeds in a dormant condition. Although the cumulative effects of I. viridiaeneus on A. ligulata recruitment require further investigation, this study and others raise the possibility that myrmecochorous systems in the Australian arid zone may be characterized by longer dispersal distances than those in other parts of the world. Long‐distance seed movement by ants lends credence to the hypothesis that distance dispersal (in contrast to directed dispersal) could be of benefit to myrmecochorous plants.  相似文献   

10.
Mutualisms are one of the main forces shaping species spatial patterns at all geographic scales. In generalised mutualisms, however, the dependence among partners is highly variable in time and space, and therefore, the effect of diffuse mutualisms on species geographic distributions is unclear. Myrmecochorous seeds in Brazilian semi‐arid vegetation are dispersed by several ant species. However, large‐seeded species are especially dependent on dispersal by the giant ant Dinoponera quadriceps, which is the main disperser of such diaspores and the species that provide the longest dispersal distance among ant species in this system. Hence, we hypothesise that the presence of D. quadriceps shapes the distribution of large‐seeded, but not the distribution of small‐seeded myrmecochorous plant species. To evaluate this hypothesis, we modelled the potential distribution of two large‐seeded (which are predominantly dispersed by D. quadriceps) and two small‐seeded (which are barely dispersed by D. quadriceps) Euphorbiaceae species and the potential distribution of D. quadriceps. We analysed the relationship between the occurrence suitability of D. quadriceps and the occurrence suitability of plant species. We found that the potential distribution of both large‐seeded and small‐seeded myrmecochorous plants was unrelated to D. quadriceps occurrence suitability. It means that the disproportional benefits provided by high‐quality disperser at local scales may not emerge at broader geographical scales. In Caatinga vegetation, diaspores are submitted to strong abiotic filters that constraint seed germination and establishment after the dispersal phase. Such abiotic filters may dilute the initial benefit provided by long‐distance dispersers. Therefore, we suggest that in dry environments like the Caatinga, the benefits of long‐distance removals should be outweighed by the risk of reach new habitats with unfavourable conditions for germination and establishment.  相似文献   

11.
Pollen and seed dispersal are key processes affecting the demographic and evolutionary dynamics of plant species and are also important considerations for the sustainable management of timber trees. Through direct and indirect genetic analyses, we studied the mating system and the extent of pollen and seed dispersal in an economically important timber species, Entandrophragma cylindricum (Meliaceae). We genotyped adult trees, seeds and saplings from a 400‐ha study plot in a natural forest from East Cameroon using eight nuclear microsatellite markers. The species is mainly outcrossed (= 0.92), but seeds from the same fruit are often pollinated by the same father (correlated paternity, rp = 0.77). An average of 4.76 effective pollen donors (Nep) per seed tree contributes to the pollination. Seed dispersal was as extensive as pollen dispersal, with a mean dispersal distance in the study plot approaching 600 m, and immigration rates from outside the plot to the central part of the plot reaching 40% for both pollen and seeds. Extensive pollen‐ and seed‐mediated gene flow is further supported by the weak, fine‐scale spatial genetic structure (Sp statistic = 0.0058), corresponding to historical gene dispersal distances (σg) reaching approximately 1,500 m. Using an original approach, we showed that the relatedness between mating individuals (Fij = 0.06) was higher than expected by chance, given the extent of pollen dispersal distances (expected Fij = 0.02 according to simulations). This remarkable pattern of assortative mating could be a phenomenon of potentially consequential evolutionary and management significance that deserves to be studied in other plant populations.  相似文献   

12.
Seed dispersal governs the distribution of plant propagules in the landscape and hence forms the template on which density‐dependent processes act. Dispersal is therefore a vital component of many species coexistence and forest dynamics models and is of applied value in understanding forest regeneration. Research on the processes that facilitate forest regeneration and restoration is given further weight in the context of widespread loss and degradation of tropical forests, and provides impetus to improve estimates of seed dispersal for tropical forest trees. South‐East Asian lowland rainforests, which have been subject to severe degradation, are dominated by trees of the Dipterocarpaceae family which constitute over 40% of forest biomass. Dipterocarp dispersal is generally considered to be poor given their large, gyration‐dispersed fruits. However, there is wide variability in fruit size and morphology which we hypothesize mechanistically underpins dispersal potential through the lift provided to seeds mediated by the wings. We explored experimentally how the ratio of fruit wing area to mass (“inverse wing loading,” IWL) explains variation in seed dispersal kernels among 13 dipterocarp species by releasing fruit from a canopy tower. Horizontal seed dispersal distances increased with IWL, especially at high wind speeds. Seed dispersal of all species was predominantly local, with 90% of seed dispersing <10 m, although maximum dispersal distances varied widely among species. We present a generic seed dispersal model for dipterocarps based on attributes of seed morphology and provide modeled seed dispersal kernels for all dipterocarp species with IWLs of 1–50, representing 75% of species in Borneo.  相似文献   

13.
Phylogeographical studies have shown that some shallow‐water marine organisms, such as certain coral reef fishes, lack spatial population structure at oceanic scales, despite vast distances of pelagic habitat between reefs and other dispersal barriers. However, whether these dispersive widespread taxa constitute long‐term panmictic populations across their species ranges remains unknown. Conventional phylogeographical inferences frequently fail to distinguish between long‐term panmixia and metapopulations connected by gene flow. Moreover, marine organisms have notoriously large effective population sizes that confound population structure detection. Therefore, at what spatial scale marine populations experience independent evolutionary trajectories and ultimately species divergence is still unclear. Here, we present a phylogeographical study of a cosmopolitan Indo‐Pacific coral reef fish Naso hexacanthus and its sister species Naso caesius, using two mtDNA and two nDNA markers. The purpose of this study was two‐fold: first, to test for broad‐scale panmixia in N. hexacanthus by fitting the data to various phylogeographical models within a Bayesian statistical framework, and second, to explore patterns of genetic divergence between the two broadly sympatric species. We report that N. hexacanthus shows little population structure across the Indo‐Pacific and a range‐wide, long‐term panmictic population model best fit the data. Hence, this species presently comprises a single evolutionary unit across much of the tropical Indian and Pacific Oceans. Naso hexacanthus and N. caesius were not reciprocally monophyletic in the mtDNA markers but showed varying degrees of population level divergence in the two nuclear introns. Overall, patterns are consistent with secondary introgression following a period of isolation, which may be attributed to oceanographic conditions of the mid to late Pleistocene, when these two species appear to have diverged.  相似文献   

14.
Gene dispersal and clonality are important aspects of plant evolution affecting the spatial genetic structure (SGS) and the long‐term survival of species. In the tropics these parameters have mostly been investigated in trees and some herbs, but rarely in climbers which frequently: (1) show clonal growth leading to a patchy distribution pattern similar to that of understory herbs; and (2) flower in the canopy where they may have access to long‐distance dispersal like canopy trees. We thus hypothesize for climbers an intermediate genetic structure between herbs and trees. The study aims at assessing breeding system and spatial extent of clonality and gene dispersal in Haumania danckelmaniana (Marantaceae), a common climber in the tropical rain forests from western Central Africa. In eastern Cameroon, 330 ramets were sampled at three spatial scales and genotyped at seven microsatellite loci. Clonality was moderate (clonal extend: 15–25 m, clonal diversity 0.4–0.65) indicating the importance of recruitment from seeds at this locality. The low inbreeding (FIS) suggested predominant outcrossing. The rate of decay of the relatedness between individuals with distance indicated limited gene dispersal distance (σ= 9–50 m, neighborhood sizes Nb = 23–67) in accordance with narrowly gravity dispersed seeds and restricted pollen transfer distance in densely flowering populations. The marked SGS (Sp = 0.011–0.026) was similar to that reported in tropical trees, but might increase with augmented clonality as in many herbs, especially under more severe disturbance regimes.  相似文献   

15.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

16.
1. Most woody plant species in tropical habitats are primarily vertebrate‐dispersed, but interactions between ants and fallen seeds and fruits are frequent. This study assesses the species‐specific services provided by ants to fallen arillate seeds of Siparuna guianensis, a primarily bird‐dispersed tree in cerrado savanna. The questions of which species interact with fallen seeds, their relative contribution (versus vertebrates) to seed removal, and the potential effects on seedling establishment are investigated. 2. Seeds are removed in similar quantities in caged and control treatments, suggesting that ants are the main dispersers on the ground. Five ant species attended seeds. Pheidole megacephala (≈0.4 cm) cooperatively transported seeds, whereas the smaller Pheidole sp. removed the seed aril on spot. Large (> 1.0 cm) Odontomachus chelifer, Pachycondyla striata, and Ectatomma edentatum individually carried seeds up to 4 m. Bits of aril are fed to larvae and intact seeds are discarded near the nest entrance. 3. Overall, greater numbers of seedlings were recorded near ant nests than in control plots without nests. This effect, however, was only detected near P. megacephala and P. striata nests, where soil penetrability was greater compared with controls. Soil nutrients did not differ between paired plots. 4. This study confirms the prevalence of ant–seed interactions in cerrado and shows that ant‐derived benefits are species‐specific. Ant services range from seed cleaning on the spot to seed displacement promoting non‐random spatial seedling recruitment. Although seed dispersal distances by ants are likely to be shorter than those by birds, our study of S. guianensis shows that fine‐scale ant‐induced seed movements may ultimately enhance plant regeneration in cerrado.  相似文献   

17.
Seed dispersers, like white‐handed gibbons (Hylobates lar), can display wide inter‐group variability in response to distribution and abundance of resources in their habitat. In different home ranges, they can modify their movement patterns along with the shape and scale of seed shadow produced. However, the effect of inter‐group variability on the destination of dispersed seeds is still poorly explained. In this study, we evaluate how seed dispersal patterns of this arboreal territorial frugivore varies between two neighboring groups, one inhabiting high quality evergreen forest and one inhabiting low quality mosaic forest. We predicted a difference in seed dispersal distance between the two groups (longer in the poor quality forest). We hypothesized that this difference would be explained by differences in home range size, daily path length, and ranging tortuosity. After 6 months of data collection, the evergreen group had a smaller home range (12.4 ha) than the mosaic group (20.9 ha), significantly longer daily path lengths (1507 m vs. 1114 m respectively) and greater tortuosity (39.1 vs. 16.1 respectively). Using gut passage times and displacement rates, we estimated the median seed dispersal distance as 163 m for the evergreen group (high quality forest) and of 116 m for the mosaic group (low quality forest). This contradiction with our initial prediction can be explained in term of social context, resource distribution, and habitat quality. Our results indicate that gibbons are dispersers of seeds between habitats and that dispersal distances provided by gibbons are influenced by a range of factors, including habitat and social context.  相似文献   

18.
Aim Long‐distance dispersal is important for plant population dynamics at larger spatial scales, but our understanding of this phenomenon is mostly based on computer modelling rather than field data. This paper, by combining field data and a simulation model, quantifies the fraction of the seed of the alien species Heracleum mantegazzianum that needs to disperse over a long distance for successful invasion. Location Central Europe, Czech Republic. Methods To assess the role of random dispersal in long‐term population dynamics of the studied species, we combined longitudinal data covering 50 years of the invasion of this plant from its very start, inferred from a series of aerial photographs of 60‐ha plots, with data on population dynamics at a fine scale of 10‐m2 plots. Results A simulation model based on field data indicates that the fraction of seed that is dispersed from source plants not described by the short‐distance dispersal kernel ranges from 0.1 to 7.5% of the total seed set. The fraction of long‐distance dispersed seed that provides the best prediction of the observed spread was significantly negatively correlated with the percentage of habitats suitable for invasion. Main conclusions Our results indicate that the fraction of seeds that needed to be dispersed over long distances to account for the observed invasion dynamics decreased with increasing proportion of invasible habitats, indicating that the spatial pattern of propagule pressure differs in landscapes prone to invasion. Long‐distance dispersal is an important component of the population dynamics of an invasive species even at relatively small scales.  相似文献   

19.
The elimination of the largest herbivores (elephants and rhinoceroses) from many forests in tropical East Asia may have severe consequences for plant species that depend on them for seed dispersal. We assessed the capacity of Malayan tapirs Tapirus indicus—the next largest nonruminant herbivore in the region—as a substitute for the lost megafauna in this role by studying their ability to disperse the seeds of nine fleshy‐fruited plants with seeds 5–97 mm in length. We combined information from feeding trials, germination tests, and field telemetry to assess the effect of tapir consumption on seed viability and to estimate how far the seeds would be dispersed. The tapirs (N=8) ingested few seeds. Seed survival through gut passage was moderately high for small‐seeded plants (e.g., 36.9% for Dillenia indica) but very low for medium‐ (e.g., 7.6% for Tamarindus indica) and large‐seeded (e.g., 2.8% for Artocarpus integer) plants. Mean seed gut passage times were long (63–236 h) and only the smallest seeds germinated afterwards. Using movement data from four wild tapirs in Peninsular Malaysia we estimated mean dispersal distances of 917–1287 m (range=22–3289 m) for small‐seeded plants. Malayan tapirs effectively dispersed small‐seeded plants but acted as seed predators for the large‐seeded plants included in our study, suggesting that they cannot replace larger herbivores in seed dispersal. With the absence of elephants and rhinos many megafaunal‐syndrome plants in tropical East Asia are expected to face severe dispersal limitation problems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号