首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Time‐of‐Flight Secondary Ion Mass Spectrometry (ToF‐SIMS) with a bismuth cluster primary ion source was used for analysing microbial lipid biomarkers in 10‐µm‐thick microscopic cryosections of methanotrophic microbial mats from the Black Sea. Without further sample preparation, archaeal isopranyl glycerol di‐ and tetraether core lipids, together with their intact diglycoside (gentiobiosyl‐) derivatives, were simultaneously identified by exact mass determination. Utilizing the imaging capability of ToF‐SIMS, the spatial distributions of these biomarkers were mapped at a lateral resolution of < 5 µm in 500 × 500 µm2 areas on the mat sections. Using cluster projectiles in the burst alignment mode, it was possible to reach a lateral resolution of 1 µm on an area of 233 × 233 µm, thus approaching the typical size of microbial cells. The mappings showed different ‘provenances’ within the sections that are distinguished by individual lipid fingerprints, namely (A) the diethers archaeol and hydroxyarchaeol co‐occurring with glycerol dialkyl glycerol tetraethers (GDGT), (B) hydroxyarchaeol and dihydroxyarchaeol, and (C) GDGT and gentiobiosyl‐GDGT. Because ToF‐SIMS is a virtually nondestructive technique affecting only the outermost layers of the sample surface (typically 10–100 nm), it was possible to further examine the studied areas using conventional microscopy, and associate the individual lipid patterns with specific morphological traits. This showed that provenance (B) was frequently associated with irregular, methane‐derived CaCO3 crystallites, whereas provenance (C) revealed a population of fluorescent, filamentous microorganisms showing the morphology of known methanotrophic ANME‐1 archaea. The direct coupling of imaging mass spectrometry with microscopic techniques reveals interesting perspectives for the in‐situ study of lipids in geobiology, microbial ecology, and organic geochemistry. After further developing protocols for handling different kinds of environmental samples, ToF‐SIMS could be used as a tool to attack many challenging problems in these fields, such as the attribution of biological source(s) to particular biomarkers in question, or the high‐resolution tracking of biogeochemical processes in modern and ancient natural environments.  相似文献   

2.
Fracture minerals within the 1.8‐Ga‐old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at ?450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). The fracture mineral succession, consisting of fluorite and low‐temperature calcite, showed a thin (20–100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF‐SIMS imaging revealed abundant, partly functionalized organic moieties, for example, CxHy+, CxHyN+, CxHyO+. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C‐C, C‐N and C‐O bonds. According to its organic nature and the abundance of relatively unstable N‐ and O‐ heterocompounds, the organic‐rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ13C, δ18O and 87Sr/86Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past.  相似文献   

3.
Organic microfossils preserved in three dimensions in transparent mineral matrices such as cherts/quartzites, phosphates, or carbonates are best studied in petrographic thin sections. Moreover, microscale mass spectrometry techniques commonly require flat, polished surfaces to minimize analytical bias. However, contamination by epoxy resin in traditional petrographic sections is problematic for the geochemical study of the kerogen in these microfossils and more generally for the in situ analysis of fossil organic matter. Here, we show that epoxy contamination has a molecular signature that is difficult to distinguish from kerogen with time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). This contamination appears pervasive in organic microstructures embedded in micro‐ to nano‐crystalline carbonate. To solve this problem, a new semi‐thin section preparation protocol without resin medium was developed for micro‐ to nanoscale in situ investigation of insoluble organic matter. We show that these sections are suited for microscopic observation of Proterozoic microfossils in cherts. ToF‐SIMS reveals that these sections are free of pollution after final removal of a <10 nm layer of contamination using low‐dose ion sputtering. ToF‐SIMS maps of fragments from aliphatic and aromatic molecules and organic sulfur are correlated with the spatial distribution of organic microlaminae in a Jurassic stromatolite. Hydrocarbon‐derived ions also appeared correlated with kerogenous microstructures in Archean cherts. These developments in analytical procedures should help future investigations of organic matter and in particular, microfossils, by allowing the spatial correlation of microscopy, spectroscopy, precise isotopic microanalyses, and novel molecular microanalyses such as ToF‐SIMS.  相似文献   

4.
Stromatolites composed of apatite occur in post‐Lomagundi–Jatuli successions (late Palaeoproterozoic) and suggest the emergence of novel types of biomineralization at that time. The microscopic and nanoscopic petrology of organic matter in stromatolitic phosphorites might provide insights into the suite of diagenetic processes that formed these types of stromatolites. Correlated geochemical micro‐analyses of the organic matter could also yield molecular, elemental and isotopic compositions and thus insights into the role of specific micro‐organisms among these communities. Here, we report on the occurrence of nanoscopic disseminated organic matter in the Palaeoproterozoic stromatolitic phosphorite from the Aravalli Supergroup of north‐west India. Organic petrography by micro‐Raman and Transmission Electron Microscopy demonstrates syngeneity of the organic matter. Total organic carbon contents of these stromatolitic phosphorite columns are between 0.05 and 3.0 wt% and have a large range of δ13Corg values with an average of ?18.5‰ (1σ = 4.5‰). δ15N values of decarbonated rock powders are between ?1.2 and +2.7‰. These isotopic compositions point to the important role of biological N2‐fixation and CO2‐fixation by the pentose phosphate pathway consistent with a population of cyanobacteria. Microscopic spheroidal grains of apatite (MSGA) occur in association with calcite microspar in microbial mats from stromatolite columns and with chert in the core of diagenetic apatite rosettes. Organic matter extracted from the stromatolitic phosphorites contains a range of molecular functional group (e.g. carboxylic acid, alcohol, and aliphatic hydrocarbons) as well as nitrile and nitro groups as determined from C‐ and N‐XANES spectra. The presence of organic nitrogen was independently confirmed by a CN? peak detected by ToF‐SIMS. Nanoscale petrography and geochemistry allow for a refinement of the formation model for the accretion and phototrophic growth of stromatolites. The original microbial biomass is inferred to have been dominated by cyanobacteria, which might be an important contributor of organic matter in shallow‐marine phosphorites.  相似文献   

5.
Study of peptides adsorption on surfaces remains a current challenge in literature. A complementary approach, combining X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) was used to investigate the antimicrobial peptide nisin adsorption on hydrophilic and hydrophobic surfaces. The native low density polyethylene was used as hydrophobic support and it was grafted with acrylic acid to render it hydrophilic. XPS permitted to confirm nisin adsorption and to determine its amount on the surfaces. ToF‐SIMS permitted to identify the adsorbed bacteriocin type and to observe its distribution and orientation behavior on both types of surfaces. Nisin was more oriented by its hydrophobic side to the hydrophobic substrate and by its hydrophilic side to the outer layers of the adsorbed peptide, in contrast to what was observed on the hydrophilic substrate. A correlation was found between XPS and ToF‐SIMS results, the types of interactions on both surfaces and the observed antibacterial activity. Such interfacial studies are crucial for better understanding the peptides interactions and adsorption on surfaces and must be considered when setting up antimicrobial surfaces. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Lipid biomarkers and their stable carbon isotopic composition, as well as 16S rRNA gene sequences, were investigated in sediment cores from active seepage zones in the Sea of Marmara (Turkey) located on the active North Anatolian Fault, to assess processes associated with methane turnover by indigenous microbial communities. Diagnostic 13C‐depleted archaeal lipids of anaerobic methane oxidizers were only found in one core from the South of Çinarcik Basin and consist mainly of archaeol, sn‐2 hydroxyarchaeol and various unsaturated pentamethylicosenes. Concurrently, abundant fatty acids (FAs) and a substantial amount of monoalkylglycerolethers (MAGEs), assigned to sulphate‐reducing bacteria, were detected with strong 13C‐depletions. Both microbial lipids and their δ13C values suggest that anaerobic oxidation of methane with sulphate reduction (AOM/SR) occurs, specially in the 10‐ to 12‐cm depth interval. Lipid biomarker results accompanied by 16S rRNA‐based microbial diversity analyses showed that ANME‐2 (ANME‐2a and ‐2c) archaea and Desulfosarcina/Desulfococcus and Desulfobulbus deltaproteobacterial clades are the major AOM assemblages, which indicate a shallow AOM community at high methane flux. Apart from the typical AOM lipid biomarker pattern, a 13C‐depleted diunsaturated hydrocarbon, identified as 7,14‐tricosadiene, occurred in the inferred maximum AOM interval at 10–12 cm depth. Its isotopic fingerprint implies that its microbial precursor occurs in close association with the AOM communities. Interestingly, the presence of 7,14‐tricosadiene coincides with the presence of the so‐far uncultured bacterial Candidate Division JS1, often detected in AOM areas. We propose the hypothesis that the JS1 bacterial group could be the potential source of 13C‐depleted tricosadiene. Future testing of this hypothesis is essential to fully determine the role of this bacterial group in AOM.  相似文献   

7.
The application of secondary ion mass spectrometry (SIMS) has tremendous value for the field of geobiology, representing a powerful tool for identifying the specific role of micro-organisms in biogeochemical cycles. In this review, we highlight a number of diverse applications for SIMS and nanoSIMS in geobiological research. SIMS performs isotope and elemental analysis at microscale enabling the investigation of the physiology of individual microbes within complex communities. Additionally, through the study of isotopic or chemical characteristics that are common in both living and ancient microbial communities, SIMS allows for direct comparisons of potential biosignatures derived from extant microbial cells and their fossil equivalents.  相似文献   

8.
There are several techniques like time of flight secondary ion mass spectrometry (ToF SIMS) that require a special protocol for preparation of biological samples, in particular, those containing single cells due to high vacuum conditions that must be kept during the experiment. Frequently, preparation methodology involves liquid nitrogen freezing what is not always convenient. In our studies, we propose and validate a protocol for preparation of single cells. It consists of four steps: (i) paraformaldehyde fixation, (ii) salt removal, (iii) dehydrating, and (iv) sample drying under ambient conditions. The protocol was applied to samples with single melanoma cells i.e. WM115 and WM266-4 characterized by similar morphology. The surface and internal structures of cells were monitored using atomic force, scanning electron and fluorescent microscopes, used to follow any potential protocol-induced alterations. To validate the proposed methodology for sample preparation, ToF SIMS experiments were carried out using C60+ cluster ion beam. The applied principal component analysis (PCA) revealed that chemical changes on cell surface of melanoma cells were large enough to differentiate between primary and secondary tumor sites.  相似文献   

9.
Changes in plant inputs under changing atmospheric CO2 can be expected to alter the size and/or functional characteristics of soil microbial communities which can determine whether soils are a C sink or source. Stable isotope probing was used to trace autotrophically fixed 13C into phospholipid fatty acid (PLFA) biomarkers in Mojave Desert soils planted with the desert shrub, Larrea tridentata. Seedlings were pulse‐labeled with 13CO2 under ambient and elevated CO2 in controlled environmental growth chambers. The label was chased into the soil by extracting soil PLFAs after labeling at Days 0, 2, 10, 24, and 49. Eighteen of 29 PLFAs identified showed 13C enrichment relative to nonlabeled control soils. Patterns of PLFA enrichment varied temporally and were similar for various PLFAs found within a microbial functional group. Enrichment of PLFA 13C generally occurred within the first 2 days in general and fungal biomarkers, followed by increasingly greater enrichment in bacterial biomarkers as the study progressed (Gram‐negative, Gram‐positive, actinobacteria). While treatment CO2 level did not affect total PLFA‐C concentrations, microbial functional group abundances and distribution responded to treatment CO2 level and these shifts persisted throughout the study. Specifically, ratios of bacterial‐to‐total PLFA‐C decreased and fungal‐to‐bacterial PLFA‐C increased under elevated CO2 compared with ambient conditions. Differences in the timing of 13C incorporation into lipid biomarkers coupled with changes in microbial functional groups indicate that microbial community characteristics in Mojave Desert soils have shifted in response to long‐term exposure to increased atmospheric CO2.  相似文献   

10.
Demosponges are a rich natural source of unusual lipids, some of which are of interest as geochemical biomarkers. Although demosponges are animals, they often host dense communities of microbial symbionts, and it is therefore unclear which lipids can be synthesized by the animal de novo, and which require input from the microbial community. To address this uncertainty, we analyzed the lipids of Amphimdeon queenslandica, the only demosponge with a published genome. We correlated the genetic and lipid repertoires of A. queenslandica to identify which biomarkers could potentially be synthesized and/or modified by the sponge. The fatty acid profile of A. queenslandica is dominated by an unusual Δ5,9 fatty acid (cis‐5,9‐hexacosadienoic acid)—similar to what has been found in other members of the Amphimdeon genus—while the sterol profile is dominated by C27‐C29 derivatives of cholesterol. Based on our analysis of the A. queenslandica genome, we predict that this sponge can synthesize sterols de novo, but it lacks critical genes necessary to synthesize basic saturated and unsaturated fatty acids. However, it does appear to have the genes necessary to modify simpler products into a more complex “algal‐like” assemblage of unsaturated fatty acids. Ultimately, our results provide additional support for the poriferan affinity of 24‐isopropylcholestanes in Neoproterozoic‐age rocks (the “sponge biomarker” hypothesis) and suggest that some algal proxies in the geochemical record could also have animal contributions.  相似文献   

11.
Bacteriohopanepolyols (BHPs) are bacterial membrane lipids that may be used as biological or environmental biomarkers. Previous studies have described the diversity, distribution, and abundance of BHPs in a variety of modern environments. However, the regulation of BHP production in polar settings is not well understood. Benthic microbial mats from ice‐covered lakes of the McMurdo Dry Valleys, Antarctica provide an opportunity to investigate the sources, physiological roles, and preservation of BHPs in high‐latitude environments. Lake Vanda is one of the most stable lakes on Earth, with microbial communities occupying specific niches along environmental gradients. We describe the influence of mat morphology and local environmental conditions on the diversity and distribution of BHPs and their biological sources in benthic microbial mats from Lake Vanda. The abundance and diversity of C‐2 methylated hopanoids (2‐MeBHP) are of particular interest, given that their stable degradation products, 2‐methylhopanes, are among the oldest and most prevalent taxonomically informative biomarkers preserved in sedimentary rocks. Furthermore, the interpretation of sedimentary 2‐methylhopanes is of great interest to the geobiology community. We identify cyanobacteria as the sole source of 2‐MeBHP in benthic microbial mats from Lake Vanda and assess the hypothesis that 2‐MeBHP are regulated in response to a particular environmental variable, namely solar irradiance.  相似文献   

12.
By ~2.9 Ga, the time of the deposition of the Witwatersrand Supergroup, life is believed to have been well established on Earth. Carbon remnants of the microbial biosphere from this time period are evident in sediments from around the world. In the Witwatersrand Supergroup, the carbonaceous material is often concentrated in seams, closely associated with the gold deposits and may have been a mobile phase 2 billion years ago. Whereas today the carbon in the Witwatersrand Supergroup is presumed to be immobile, hollow hydrocarbon spheres ranging in size from <1 μm to >50 μm were discovered emanating from a borehole drilled through the carbon‐bearing seams suggesting that a portion of the carbon may still be mobile in the deep subsurface. ToF‐SIMS and STXM analyses revealed that these spheres contain a suite of alkane, alkenes, and aromatic compounds consistent with the described organic‐rich carbon seams within the Witwatersrand Supergroup's auriferous reef horizons. Analysis by electron microscopy and ToF‐SIMS, however, revealed that these spheres, although most likely composed of biogenic carbon and resembling biological organisms, do not retain any true structural, that is, fossil, information and were formed by an abiogenic process.  相似文献   

13.
Sub‐seafloor sediments are populated by large numbers of microbial cells but not much is known about their metabolic activities, growth rates and carbon assimilation pathways. Here we introduce a new method enabling the sensitive detection of microbial lipid production and the distinction of auto‐ and heterotrophic carbon assimilation. Application of this approach to anoxic sediments from a Swedish fjord allowed to compare the activity of different functional groups, the growth and turnover times of the bacterial and archaeal communities. The assay involves dual stable isotope probing (SIP) with deuterated water (D2O) and 13CDIC (d issolved i norganic c arbon). Culture experiments confirmed that the D content in newly synthesized lipids is in equilibrium with the D content in labelled water, independent of whether the culture grew hetero‐ or autotrophically. The ratio of 13CDIC to D2O incorporation enables distinction between these two carbon pathways in studies of microbial cultures and in environmental communities. Furthermore, D2O‐SIP is sufficiently sensitive to detect the formation of few hundred cells per day in a gram of sediment. In anoxic sediments from a Swedish fjord, we found that > 99% of newly formed lipids were attributed to predominantly heterotrophic bacteria. The production rate of bacterial lipids was highest in the top 5 cm and decreased 60‐fold below this depth while the production rate of archaeal lipids was rather low throughout the top meter of seabed. The contrasting patterns in the rates of archaeal and bacterial lipid formation indicate that the factors controlling the presence of these two lipid groups must differ fundamentally.  相似文献   

14.
Aims: The aims of this study were to evaluate the host‐specific distribution of Bacteroidales 16S rRNA gene sequences from human‐ and animal‐related effluents and faeces, and to define a ruminant‐specific marker. Methods and Results: Bacteroidales 16S rRNA gene clone libraries were constructed from samples of effluent (sewage, bovine manure and pig slurry) and faeces (human, bovine, pig and wild bird), using PCR primers targeting order Bacteroidales. The phylogenetic analysis revealed six main distinct human‐, bovine‐, pig‐ and wild bird‐specific clusters. From the bovine‐specific cluster II, we designed a ruminant‐specific marker, Rum‐2‐Bac, and this showed 97% sensitivity (n = 30) and 100% specificity (n = 40) when tested by TaqMan® real‐time PCR. Average concentrations of this marker in bovine and sheep faeces and in bovine manure were 8·2 ± 0·5, 8·4 ± 1·3 and 7 ± 0·5 log10 copies per gram, respectively. It was also quantified in samples of runoff water impacted by bovine manure, with average concentrations of 5·1 ± 0·3 log10 copies per millilitre water. Conclusions: Our results confirmed that some members of Bacteroidales isolated from effluents and faeces had host‐specific distributions. Identification of a bovine‐specific cluster made it possible to design a reliable ruminant‐specific marker. Significance and Impact of the Study: The host‐specific distribution of Bacteroidales sequences from effluents mirrored the host‐specific distribution of sequences observed in individual faeces. This efficient new ruminant‐specific Bacteroidales 16S rRNA marker represents a useful addition to the microbial source tracking toolbox.  相似文献   

15.
Archaea are important players in marine biogeochemical cycles, and their membrane lipids are useful biomarkers in environmental and geobiological studies. However, many archaeal groups remain uncultured and their lipid composition unknown. Here, we aim to expand the knowledge on archaeal lipid biomarkers and determine the potential sources of those lipids in the water column of the euxinic Black Sea. The archaeal community was evaluated by 16S rRNA gene amplicon sequencing and by quantitative PCR. The archaeal intact polar lipids (IPLs) were investigated by ultra‐high‐pressure liquid chromatography coupled to high‐resolution mass spectrometry. Our study revealed both a complex archaeal community and large changes with water depth in the IPL assemblages. In the oxic/upper suboxic waters (<105 m), the archaeal community was dominated by marine group (MG) I Thaumarchaeota, coinciding with a higher relative abundance of hexose phosphohexose crenarchaeol, a known marker for Thaumarchaeota. In the suboxic waters (80–110 m), MGI Nitrosopumilus sp. dominated and produced predominantly monohexose glycerol dibiphytanyl glycerol tetraethers (GDGTs) and hydroxy‐GDGTs. Two clades of MGII Euryarchaeota were present in the oxic and upper suboxic zones in much lower abundances, preventing the detection of their specific IPLs. In the deep sulfidic waters (>110 m), archaea belonging to the DPANN Woesearchaeota, Bathyarchaeota, and ANME‐1b clades dominated. Correlation analyses suggest that the IPLs GDGT‐0, GDGT‐1, and GDGT‐2 with two phosphatidylglycerol (PG) head groups and archaeol with a PG, phosphatidylethanolamine, and phosphatidylserine head groups were produced by ANME‐1b archaea. Bathyarchaeota represented 55% of the archaea in the deeper part of the euxinic zone and likely produces archaeol with phospho‐dihexose and hexose‐glucuronic acid head groups.  相似文献   

16.
The origin of organic matter in recent anoxic sediments of the alpine Lake Bled (NW Slovenia) was determined by analyzing the carbon isotope composition of lipid biomarkers, i.e. alkanes, alcohols, sterols and fatty acids, busing compound specific, carbon isotope analysis. The results indicate that, although biomarker analysis indicated mostly plankton and terrestrial sources for lipids, an important part of sedimentary lipids, especially sterols, are autochthonous, of anaerobic microbial (methanotrophic) origin. Marked differences were observed in δ13C values of lipid biomarkers in settling particles collected 2 m above the bottom, and in δ13C values determined in surface sediment. These results indicate that even some compounds found in both particulate organic matter and sediments are the same in terms of chemical structures, their sources can be different and thus, isotopic composition should be used as a complementary tool for source identification.  相似文献   

17.
Anoxygenic, photosynthetic bacteria are common at redox boundaries. They are of interest in microbial ecology and geosciences through their role in linking the carbon, sulfur, and iron cycles, yet much remains unknown about how their flexible carbon metabolism—permitting either autotrophic or heterotrophic growth—is recorded in the bulk sedimentary and lipid biomarker records. Here, we investigated patterns of carbon isotope fractionation in a model photosynthetic sulfur‐oxidizing bacterium, Allochromatium vinosum DSM180T. In one treatment, A. vinosum was grown with CO2 as the sole carbon source, while in a second treatment, it was grown on acetate. Different intracellular isotope patterns were observed for fatty acids, phytol, individual amino acids, intact proteins, and total RNA between the two experiments. Photoautotrophic CO2 fixation yielded typical isotopic ordering for the lipid biomarkers: δ13C values of phytol > n‐alkyl lipids. In contrast, growth on acetate greatly suppressed intracellular isotopic heterogeneity across all molecular classes, except for a marked 13C‐depletion in phytol. This caused isotopic “inversion” in the lipids (δ13C values of phytol < n‐alkyl lipids). The finding suggests that inverse δ13C patterns of n‐alkanes and pristane/phytane in the geologic record may be at least in part a signal for photoheterotrophy. In both experimental scenarios, the relative isotope distributions could be predicted from an isotope flux‐balance model, demonstrating that microbial carbon metabolisms can be interrogated by combining compound‐specific stable isotope analysis with metabolic modeling. Isotopic differences among molecular classes may be a means of fingerprinting microbial carbon metabolism, both in the modern environment and the geologic record.  相似文献   

18.
The stratified water column of the Black Sea produces a vertical succession of redox zones, stimulating microbial activity at the interfaces. Our study of intact polar membrane lipids (IPLs) in suspended particulate matter and sediments highlights their potential as biomarkers for assessing the taxonomic composition of live microbial biomass. Intact polar membrane lipids in oxic waters above the chemocline represent contributions of bacterial and eukaryotic photosynthetic algae, while anoxygenic phototrophic bacteria and sulfate-reducing bacteria comprise a substantial amount of microbial biomass in deeper suboxic and anoxic layers. Intact polar membrane lipids such as betaine lipids and glycosidic ceramides suggest unspecified anaerobic bacteria in the anoxic zone. Distributions of polar head groups and core lipids show planktonic archaea below the oxic zone; methanotrophic archaea are only a minor fraction of archaeal biomass in the anoxic zone, contrasting previous observations based on the apolar derivatives of archaeal lipids. Sediments contain algal and bacterial IPLs from the water column, but transport to the sediment is selective; bacterial and archaeal IPLs are also produced within the sediments. Intact polar membrane lipid distributions in the Black Sea are stratified in accordance with geochemical profiles and provide information on vertical successions of major microbial groups contributing to suspended biomass. This study vastly extends our knowledge of the distribution of complex microbial lipids in the ocean.  相似文献   

19.
An isolated, yet virtually intact contour feather (FUM‐1980) from the lower Eocene Fur Formation of Denmark was analysed using multiple imaging and molecular techniques, including field emission gun scanning electron microscopy (FEG‐SEM), X‐ray absorption spectroscopy and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Additionally, synchrotron radiation X‐ray tomographic microscopy (SRXTM) was employed in order to produce a digital reconstruction of the fossil. Under FEG‐SEM, the proximal, plumulaceous part of the feather revealed masses of ovoid microstructures, about 1.7 μm long and 0.5 μm wide. Microbodies in the distal, pennaceous portion were substantially smaller (averaging 0.9 × 0.2 μm), highly elongate, and more densely packed. Generally, the microbodies in both the plumulaceous and pennaceous segments were aligned along the barbs and located within shallow depressions on the exposed surfaces. Biomarkers consistent with animal eumelanins were co‐localized with the microstructures, to suggest that they represent remnant eumelanosomes (i.e. eumelanin‐housing cellular organelles). Additionally, ToF‐SIMS analysis revealed the presence of sulfur‐containing organics – potentially indicative of pheomelanins – associated with eumelanin‐like compounds. However, since there was no correlation between melanosome morphology and sulfur content, we conclude these molecular structures derive from diagenetically incorporated sulfur rather than pheomelanin. Melanosomes corresponding roughly in both size and morphology with those in the proximal part of FUM‐1980 are known from contour feathers of extant parrots (Psittaciformes), an avian clade that has previously been reported from the Fur Formation.  相似文献   

20.
Water–rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10–160 cm) and groundwater from a 50‐m‐deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative‐PCR. Different microbial communities were observed in the groundwater, the fracture‐coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen‐oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low‐temperature water–rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer–Tropsch‐type reactions, dominated in the fracture‐coating material. Putative hydrogen‐, ammonia‐, manganese‐ and iron‐oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water–rock reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号