首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
Comparison of different methods of time shift measurement in EEG   总被引:3,自引:0,他引:3  
Digital signal processing techniques are often used for measurement of small time shifts between EEG signals. In our work we tested properties of linear cross-correlation and phase/coherence method. The last mentioned method was used in two versions. The first version used fast Fourier transform (FFT) algorithm and the second was based on autoregressive modeling with fixed or adaptive model order. Methods were compared on several testing signals mimicking real EEG signals. The accuracy index for each method was computed. Results showed that for long signal segments all methods bring comparably good results. Accuracy of FFT phase/coherence method significantly decreased when very short segments were used and also decreased with an increasing level of the additive noise. The best results were obtained with autoregressive version of phase/coherence. This method is more reliable and may be used with high accuracy even in very short signals segments and it is also resistant to additive noise.  相似文献   

2.
The corneal viscoelasticity have great clinical significance, such as the early diagnosis of keratoconus. In this work, an analysis method which utilized the elastic wave velocity, frequency and energy attenuation to assess the corneal viscoelasticity is presented. Using phase‐resolved optical coherence tomography, the spatial‐temporal displacement map is derived. The phase velocity dispersion curve and center frequency are obtained by transforming the displacement map into the wavenumber‐frequency domain through the 2D fast Fourier transform (FFT). The shear modulus is calculated through Rayleigh wave equation using the phase velocity in the high frequency. The normalized energy distribution is plotted by transforming the displacement map into the spatial‐frequency domain through the 1D FFT. The energy attenuation coefficient is derived by exponential fitting to calculate the viscous modulus. Different concentrations of tissue‐mimicking phantoms and porcine corneas are imaged to validate this method, which demonstrates that the method has the capability to assess the corneal viscoelasticity.  相似文献   

3.
For the purpose of improving accuracy of noninvasive flow measurements in small (1–2 mm diameter) blood vessels, an existing 20 MHz pulsed ultrasound Doppler velocimeter (PUDVM) has been augmented to allow fast Fourier transformation (FFT) of its Doppler shift signal. The modified instrument was used to collect velocity spectra for a benchtop test section delivering precise Poiseuille flows at velocities in the range of physiological interest. The velocity spectra demonstrated a substantial degree of broadening, much of which was attributable to the geometry of the finite sample volume size. Several spectral indices were studied as a function of flow field variables. Results showed that the intensity-weighted mean Doppler shift frequency, when converted to its corresponding velocity vM, agreed very closely with the theoretically predicted local fluid velocity. Measurement linearity and repeatability were evaluated for a number of system variables, indicating that FFT performance was essentially unaffected by several parameters capable of causing major degradation of (phasic) Doppler shift signals produced by conventional zero-crossing-counter circuitry. As presently configured, the augmented PUDVM instrument is fully capable of detailed flow field mapping in small subcutaneous vessels such as human digital arteries.  相似文献   

4.
A high-speed and high-accuracy measurement of relaxational frequency spectra of complex dielectric constants of polyelectrolyte solutions with a high conductivity was realized by a new digital signal processing technique. In this method, a sum of sinusoidal waves of geometrical series of frequencies is utilized as a multifrequency excitation signal and demodulation of the resulting response is carried out simply by addition and subtraction of digital signals in a minicomputer. This new technique is superior to the conventional cross correlation method using the fast Fourier transform in that it greatly reduces the processing time and avoids effectively the influence of a quantization error. The result for a DNA solution obtained by this method is presented to demonstrate the utility of this method.  相似文献   

5.
The primary purpose of the present study was to compare the fast Fourier transform (FFT) with the discrete wavelet transform (DWT) for determining the mechanomyographic (MMG) and electromyographic (EMG) center frequency [mean power frequency (mpf), median frequency (mdf), or wavelet center frequency (cf)] patterns during fatiguing isokinetic muscle actions of the biceps brachii. Seven men (mean+/-SD age=23+/-3 years) volunteered to perform 50 consecutive maximal, concentric isokinetic muscle actions of the dominant forearm flexors at a velocity of 180 degrees s(-1). Non-parametric "run" tests indicated significant (p<0.05) trends in the MMG and EMG signals for the 5th, 25th, and 45th muscle actions for all subjects, thereby confirming non-stationarity of the MMG and EMG signals. There were significant (p<0.05) correlations among the average normalized mpf, mdf, and cf values for contractions 1-50 for both MMG (r=0.671-0.935) and EMG (r=0.956-0.987). Polynomial regression analyses demonstrated quadratic decreases in normalized MMG mpf (R2=0.439), MMG mdf (R2=0.258), MMG cf (R2=0.359), EMG mpf (R2=0.952), EMG mdf (R2=0.914) and EMG cf (R2=0.888) across repetitions. The primary finding of this study was the similarity in the mpf, mdf, and cf patterns for both MMG and EMG, which suggested that, despite the concerns over non-stationarity, Fourier based methods are acceptable for determining the patterns for normalized MMG and EMG center frequency during fatiguing dynamic muscle actions at moderate velocities.  相似文献   

6.
The Fourier series was used to analyse the oral movements recorded by the orokinetogram during breastfeeding in human babies. This is a new method that allows recording of oral movements without introducing any extrinsic element between the nipple and the mouth of the baby. The advantage of displaying suckling activity after fast Fourier transform (FFT) is that this algorithm allows storage, quantification and frequency analysis of the oral movements throughout a suckling bout, which enables the total oral activity to be measured. Two types of oral movements are found: slow high amplitude (SHA) and fast low amplitude (FLA). FLA movements may be derived from peristaltic movements of the tongue that result in tickling stimuli to the mechanoreceptors of the nipple and milk expression. The frequency bandwidth of oral movements is wider (0-8 Hz) than has been described previously (0-3 Hz) and this is due to the presence of the FLA oral movements. An indirect measurement of the energy of oral movements during suckling is obtained by the pattern of energy distribution used in each individual frequency band by oral movements. This pattern changes in relation to the periods of continuous and intermittent suckling activity. SHA and FLA oral movements are more intense during continuous suckling. Statistical analysis showed a correlation between the energy of SHA and FLA waves throughout the suckling bout, and also that the highest level of energy during suckling activity is displayed during the first 2 min. The novel tools described in this paper allow investigation of the role of suckling stimulus in reflex hormone release and other mother-infant interactions.  相似文献   

7.
Flagellar mutants of Chlamydomonas have greatly contributed to our understanding of the function of axonemes and axonemal dyneins. An important step in studying mutants is to correlate the molecular and structural defects in the axoneme with motility. This is not always easy, however, partly because it is often necessary to quantify axonemal motility by measuring the cell's swimming velocity, the flagellar beat frequency, or flagellar waveform in a number of cells or axonemes. To skip this time-consuming step, a quick method for measuring the average flagellar beat frequency in a population of cells is developed based on fast Fourier transform (FFT) analysis of the vibration of cell bodies. This method yields the average beat frequency within 10-60 s and has been used as a powerful tool for identifying mutants lacking various dynein species. It is also particularly useful for studies analyzing detergent-extracted cell models under various reactivation conditions.  相似文献   

8.
《IRBM》2008,29(1):44-52
Electroencephalogram (EEG) analysis remains problematic due to limited understanding of the signal origin, which leads to the difficulty of designing evaluation methods. In spite of these shortcomings, the EEG is a valuable tool in the evaluation of some neurological disorders as well as in the evaluation of overall cerebral activity. In most studies, which use quantitative EEG analysis, the properties of measured EEG are computed by applying power spectral density (PSD) estimation for selected representative EEG samples. The sample for which the PSD is calculated is assumed to be stationary. This work deals with a comparative study of the PSD obtained from normal, epileptic and alcoholic EEG signals. The power density spectra were calculated using fast Fourier transform (FFT) by Welch's method, auto regressive (AR) method by Yule–Walker and Burg's method. The results are tabulated for these different classes of EEG signals.  相似文献   

9.
The measurement of lumbar spine motion is an important step for injury prevention research during complex and high impact activities, such as cricket fast bowling or javelin throwing. This study examined the performance of two designs of a lumbar rig, previously used in gait research, during a controlled high impact bench jump task. An 8-camera retro-reflective motion analysis system was used to track the lumbar rig. Eleven athletes completed the task wearing the two different lumbar rig designs. Flexion extension data were analyzed using a fast Fourier transformation to assess the signal power of these data during the impact phase of the jump. The lumbar rig featuring an increased and pliable base of support recorded moderately less signal power through the 0-60 Hz spectrum, with statistically less magnitudes at the 0-5 Hz (p = .039), 5-10 Hz (p = .005) and 10-20 Hz (p = .006) frequency bins. A lumbar rig of this design would seem likely to provide less noisy lumbar motion data during high impact tasks.  相似文献   

10.
A method for determining and analyzing the wing beat frequency in Diptera is presented. This method uses an optical tachometer to measure Diptera wing movement during flight. The resulting signal from the optical measurement is analyzed using a Fast Fourier Transform (FFT) technique, and the dominant frequency peak in the Fourier spectrum is selected as the wing beat frequency. Also described is a method for determining quantitatively the degree of variability of the wing beat frequency about the dominant frequency. This method is based on determination of a quantity called the Hindex, which is derived using data from the FFT analysis. Calculation of the H index allows computer-based selection of the most suitable segment of recorded data for determination of the representative wing beat frequency. Experimental data suggest that the H index can also prove useful in examining wing beat frequency variability in Diptera whose flight muscle structure has been genetically altered. Examples from Drosophila indirect flight muscle studies as well as examples of artificial data are presented to illustrate the method. This method fulfills a need for a standardized method for determining wing beat frequencies and examining wing beat frequency variability in insects whose flight muscles have been altered by protein engineering methods.  相似文献   

11.
Mixed population biofilms consisting of Pseudomonas aeruginosa, P. fluorescens, and Klebsiella pneumoniae were grown in a flow cell under turbulent conditions with a water flow velocity of 18 cm/s (Reynolds number, Re, =1192). After 7 days the biofilms were patchy and consisted of cell clusters and streamers (filamentous structures attached to the downstream edge of the clusters) separated by interstitial channels. The cell clusters ranged in size from 25 to 750 microm in diameter. The largest clusters were approximately 85 microm thick. The streamers, which were up to 3 mm long, oscillated laterally in the flow. The motion of the streamers was recorded at various flow velocities up to 50.5 cm/s (Re 3351) using confocal scanning laser microscopy. The resulting time traces were evaluated by image analysis and fast Fourier transform analysis (FFT). The amplitude of the motion increased with flow velocity in a sigmoidal shaped curve, reaching a plateau at an average fluid flow velocity of approximately 25 cm/s (Re 1656). The motion of the streamers was possibly limited by the flexibility of the biofilm material. FFT indicated that the frequency of oscillation was directly proportional to the average flow velocity (u(ave)) below 9.5 cm/s (Re 629). At u(ave) greater than 9.5 cm/s, oscillation frequencies were above our measurable frequency range (0.12-6.7 Hz). The oscillation frequency was related to the flow velocity by the Strouhal relationship, suggesting that the oscillations were possibly caused by vortex shedding from the upstream biofilm clusters. A loss coefficient (k) was used to assess the influence of biofilm accumulation on pressure drop. The k across the flow cell colonized with biofilm was 2.2 times greater than the k across a clean flow cell.  相似文献   

12.
Background. Scleral biomechanical properties may be important in the pathogenesis and progression of glaucoma. The goal of this study is to develop and validate an ultrasound method for measuring cross-sectional distributive strains in the sclera during elevations of intraocular pressure (IOP). Method of Approach. Porcine globes (n?=?5) were tested within 24 hs postmortem. The posterior scleral shells were dissected and mounted onto a custom-built pressurization chamber. A high-frequency (55-MHz) ultrasound system (Vevo660, VisualSonics Inc., Toronto) was employed to acquire the radio frequency data during scans of the posterior pole along both circumferential and meridian directions. The IOP was gradually increased from 5 to 45?mmHg. The displacement fields were obtained from correlation-based ultrasound speckle tracking. A least-square strain estimator was used to calculate the strains in both axial and lateral directions. Experimental validation was performed by comparing tissue displacements calculated from ultrasound speckle tracking with those induced by an actuator. Theoretical analysis and simulation experiments were performed to optimize the ultrasound speckle tracking method and evaluate the accuracy and signal-to-noise ratio (SNR) in strain estimation. Results. Porcine sclera exhibited significantly larger axial strains (e.g., -5.1?±?1.5% at 45?mmHg, meridian direction) than lateral strains (e.g., 2.2?±?0.7% at 45?mmHg, meridian direction) during IOP elevations (P's?相似文献   

13.
目的:总结眼部常见疾病的超声表现,探讨超声对其的诊断价值。方法:对2009年6月~2010年6月来我院超声科行眼部超声检查(占位性病变经手术或病理学结果证实)的63例患者的资料进行回顾性分析,归纳总结了眼部常见疾病的二维超声(2D)、彩色多普勒(CDFI)及超声造影(CEUS)表现。结果:眼部疾病的超声图像在位置、形状、边界、声学特点及对周围组织的影响等方面具有特征性表现;超声造影能有效地显示出病灶内的血管及血流灌注情况。结论:超声对眼部常见病的诊断是一种简便、无创、经济且诊断符合率高的辅助影像学方法,具有较高的实际应用价值。  相似文献   

14.
The analysis of blood velocity using noninvasive Doppler ultrasound is now an important clinical technique. The paper discusses the application of the Wigner transform to the estimation of blood velocity from the Doppler signal. A new type of Wigner transform, the Zoom Wigner Transform or ZWT is developed. The ZWT has certain advantages over the standard Wigner transform, particularly in relation to the frequency resolution of specific components, these are discussed. The final section of the paper considers practical aspects of blood velocity estimation and illustrates the use of the WZT in relation to other methods.  相似文献   

15.
Ultrasound speed, as measured by a transmission technique in equine cortical bone, was found to vary markedly with the direction of the ultrasound path through the bone. Using bone samples from the mid-site of the third metacarpus of 20 horses, the ultrasound speed was measured as 4125 m s-1 in the longitudinal direction, 3442 m s-1 in the circumferential or transverse direction, and 3428 m s-1 in the radial direction. These results confirm the anisotropic properties of compact bone. Ultrasound speed had a positive linear relationship when compared with bone specific gravity of cortical bone (r = 0.773, n = 35, p less than 0.0001), and an inverse linear relationship with porosity. Specific gravity has an inverse correlation with porosity (r = 0.857, n = 35, p less than 0.0001). Over the temperature range of 4-42 degrees C, ultrasound speed varied inversely according to temperature with a logarithmic function giving the best fit. These results have important implications for the clinical applications of ultrasound speed in assessing bone quality in racehorses and provide important basic information for the understanding of the passage of ultrasound through cortical bone, which has possible clinical applications in humans.  相似文献   

16.
Background fluorescence is a major concern in time-resolved microfluorimetry studies of biological samples. A general method for subtraction of an arbitrary background signal in measurements of lifetime and anisotropy decay by multiharmonic Fourier transform spectroscopy is presented. Multifrequency phase and modulation values are measured in parallel by transformation of digitized time-domain waveforms into the frequency domain. For subtraction of background, time-domain waveforms are acquired for emission and reference photomultipliers for sample (e.g., cell containing fluorophore) and blank (e.g., unlabeled cell). Time-domain waveforms obtained in a series of measurements (e.g., sample and blank for parallel and perpendicular orientations of an emission polarizer) are time-justified by least-squares fitting of reference channel waveforms or by phase comparison of the first Fourier harmonics of the reference channel. Background is then subtracted directly in the time domain, and the subtracted waveform is Fourier transformed to the frequency domain for analysis of lifetime or anisotropy decay. This approach yielded excellent background correction over a wide range of background intensities and decay profiles. The method was tested in cuvette fluorimetry with fluorescein and acridine orange and in fluorescence microscopy with living MDCK cells loaded with the pH indicator BCECF. Sample lifetimes and rotational parameters could be recovered accurately with greater than 50% of the signal arising from background. These results establish a direct and practical approach to subtraction of background in complex biological and chemical samples studied by frequency-domain fluorimetry.  相似文献   

17.
 The availability of a simple-to-use, automatic measurement system for noninvasive flow estimation is imperative, given the clinical demand for an acceptable noninvasive procedure rather than the standard invasive procedure of thermodilution. A method for calculating cardiac output from noninvasively derived pressure pulses has been developed, and the results of a preliminary evaluation study on post-cardiac surgery patients for whom invasive flow measures were readily available for comparison are provided in this report. The proposed method relies on fast Fourier transform (FFT) analysis of pulses measured externally at the carotid and femoral pressure points. A transfer function of the aorta is computed from digitally filtered pulse measurements, and a tapered model of the aorta is parametrically adapted using a simplex optimization algorithm so that its transfer function matches that derived experimentally. An aortic input impedance term is obtained from the optimized model and utilized along with the carotid pulse (analogous to input voltage) to compute aortic flow. In addition to its automation, attractive features of this method include the requirement for relatively few pulses for analysis as well as considerable resistance to noise artifact. For 59 data records collected from 54 post-cardiac surgery patients, the average flow measurements computed over several pulses compare well with the standard, invasive method of thermodilution. Preliminary results also indicate a strong potential for tracking changes in cardiac output over time, and invite further use of the method in monitoring hemodynamically unstable patients. Received: 18 February 1997 / Accepted in revised form: 12 May 1997  相似文献   

18.
The scale function in wavelet transformation (WT) determines wavelet dilation and optimises the processing of a given signal. Here, the objective was to determine the influence of the scale function on the WT of 160 surface electromyograms using second-degree polynomial (WT(poly)) and exponential (WT(exp)) scale functions. For each WT, a mean frequency (MNF) was calculated from the original wavelet spectrum and from the cubic spline interpolated wavelet spectrum, and these were compared with the MNF obtained from a fast Fourier transform (FFT). The total intensity (Tp) for each WT was compared with the root mean square (RMS). The MNFs computed from the original wavelet spectra were significantly (P < 0.05) lower and higher when computed from the reconstructed wavelet spectra than those from the FFT. The Tp computed from WT(poly) showed significantly higher agreement with the RMS than the Tp from WT(exp). Finally, the WT(poly) may serve as a reference in electromyography.  相似文献   

19.
We describe here a technique called phase tracking that greatly improves the accuracy of measurements of the membrane capacitance of single cells. We have modified the original phase detection technique to include a method for creating calibrated changes in the resistance in series with the cell. This provides a method to automate the adjustment of the phase detector to the appropriate phase angle for measuring membrane capacitance. The phase determination depends only on the cell's electrical parameters and does not require matching of the cell impedance with that of the slow capacitance cancellation circuitry of the patch-clamp amplifier. We show here that phase tracking can accurately locate the phase of the capacitance signal and can keep the detector aligned with this signal during measurements of exocytosis in mast cells, irrespective of the large drifts which occur in cell membrane resistance, membrane capacitance, or series resistance. The phase tracking technique is a valuable tool for quantifying exocytosis and endocytosis in single cells.  相似文献   

20.
Historically, in computational biology the fast Fourier transform (FFT) has been used almost exclusively to count the number of exact letter matches between two biosequences. This paper presents an FFT algorithm that can compute the match score of a sequence against a position-specific scoring matrix (PSSM). Our algorithm finds the PSSM score simultaneously over all offsets of the PSSM with the sequence, although like all previous FFT algorithms, it still disallows gaps. Although our algorithm is presented in the context of global matching, it can be adapted to local matching without gaps. As a benchmark, our PSSM-modified FFT algorithm computed pairwise match scores. In timing experiments, our most efficient FFT implementation for pairwise scoring appeared to be 10 to 26 times faster than a traditional FFT implementation, with only a factor of 2 in the acceleration attributable to a previously known compression scheme. Many important algorithms for detecting biosequence similarities, e.g., gapped BLAST or PSIBLAST, have a heuristic screening phase that disallows gaps. This paper demonstrates that FFT algorithms merit reconsideration in these screening applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号