首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four healthy non obese young volunteers were observed for a 24-hr period, every other month, over the course of one year. Tolbutamide was injected i.v. each day of the experiment every four hours. Tolbutamide-induced insulin secretion (T.I.I.S.) was evaluated by planimetrically measuring insulin areas above basal levels. Tolbutamide-induced hypoglycemic effect was evaluated by measuring the blood glucose difference between the Sth and 25th minute after the drug injection (δG 5′-25′). The macroscopic evaluation of T.I.I.S. and δG 5′-2S′(mean chronograms) permitted the detection of the existence of a circannual variation of both variables. In particular the maximum level of the blood glucose drop (δG 5-25) was registered in February.

Subsequently the quantification of the rhythm of T.I.I.S. was obtained by fitting a sine curve, according to the Cosinor method. The highest insulin release was confirmed in winter.

As previously documented, the existence of a statistically significant circadian rhythm of T.I.I.S. was confirmed in the morning, i.e. the same period of the day in which insulin-induced hypoglycemia occurs.  相似文献   

2.
The three dimensional crystal structure of T5 5'-3' exonuclease was compared with that of two other members of the 5'-3' exonuclease family: T4 ribonuclease H and the N-terminal domain of Thermus aquaticus DNA polymerase I. Though these structures were largely similar, some regions of these enzymes show evidence of significant molecular flexibility. Previous sequence analysis had suggested the existence of a helix-hairpin-helix motif in T5 exonuclease, but a distinct, though related structure is actually found to occur. The entire T5 exonuclease structure was then compared with all the structures in the complete Protein Data Bank and an unexpected similarity with gamma-delta (gamma delta) resolvase was observed. 5'-3' exonucleases and gamma delta resolvase are enzymes involved in carrying out quite different manipulations on nucleic acids. They appear to be unrelated at the primary sequence level, yet the fold of the entire catalytic domain of gamma delta resolvase is contained within that of the 5'-3'exonuclease. Different large-scale helical structures are used by both families to form DNA binding sites.  相似文献   

3.
DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain.  相似文献   

4.
Hashimoto K  Shimizu K  Nakashima N  Sugino A 《Biochemistry》2003,42(48):14207-14213
DNA polymerases delta and epsilon (pol delta and epsilon) are the two major replicative polymerases in the budding yeast Saccharomyces cerevisiae. The fidelity of pol delta is influenced by its 3'-5' proofreading exonuclease activity, which corrects misinsertion errors, and by enzyme cofactors. PCNA is a pol delta cofactor, called the sliding clamp, which increases the processivity of pol delta holoenzyme. This study measures the fidelity of 3'-5' exonuclease-proficient and -deficient pol delta holoenzyme using a synthetic 30mer primer/100mer template in the presence and absence of PCNA. Although PCNA increases pol delta processivity, the presence of PCNA decreased pol delta fidelity 2-7-fold. In particular, wild-type pol delta demonstrated the following nucleotide substitution efficiencies for mismatches in the absence of PCNA: G.G, 0.728 x 10(-4); T.G, 1.82 x 10(-4); A.G, <0.01 x 10(-4). In the presence of PCNA these values increased as follows: G.G, 1.30 x 10(-4); T.G, 2.62 x 10(-4); A.G, 0.074 x 10(-4). A similar but smaller effect was observed for exonuclease-deficient pol delta (i.e., 2-4-fold increase in nucleotide substitution efficiencies in the presence of PCNA). Thus, the fidelity of wild-type pol delta in the presence of PCNA is more than 2 orders of magnitude lower than the fidelity of wild-type pol epsilon holoenzyme and is comparable to the fidelity of exonuclease-deficient pol epsilon holoenzyme.  相似文献   

5.
The Boc-protected derivative of a photoactivatable, carbene-generating analogue of phenylalanine, L-4'-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine [(Tmd)Phe], was used to acylate 5'-O-phosphorylcytidylyl(3'-5')adenosine (pCpA). A diacyl species was isolated which upon successive treatments with trifluoroacetic acid and 0.01 M HCl yielded a 1:1 mixture of 2'(3')-O-(Tmd)phenylalanyl-pCpA and of its 2'-5'-phosphodiester isomeric form. Adapting a procedure introduced by Hecht's group [Heckler, T.G., Chang, L.H., Zama, Y., Naka, T., Chorghade, M.S., & Hecht, S.M. (1984) Biochemistry 23, 1468-1473], brief incubation of a 15 molar excess of this material with Escherichia coli tRNAPhe, missing at the acceptor stem the last two nucleotides (pCpA), in the presence of T4 RNA ligase and ATP afforded "chemically misaminoacylated" tRNAPhe in approximately 50% yield. Following chromatographic purification on DEAE-Sephadex A-25, benzoylated DEAE-cellulose, and Bio-Gel P-6, the misaminoacylated tRNAPhe was characterized by (i) urea-polyacrylamide gel electrophoresis, (ii) enzymatic reaminoacylation under homologous conditions following chemical deacylation, and (iii) its ability to stimulate protein synthesis in an in vitro translation system which, through the addition of the phenylalanyl-tRNA synthetase inhibitor phenylalaninyl-AMP, was unable to charge its endogenous tRNAPhe. The data demonstrate that we have prepared a biologically active misaminoacylated tRNAPhe.  相似文献   

6.
This study evaluated the relative contribution of insulin-dependent mechanisms vs. mechanisms independent on dynamic insulin for glucose intolerance induced by high-fat diet. C57BL/6J mice underwent a frequently sampled intravenous glucose tolerance test (1 g/kg glucose) at 1 wk and 1, 3, and 10 mo after initiation of a high-fat diet (58% fat; control diet 11% fat) to measure glucose effectiveness (S(G)) and disposition index (DI), i.e., insulin sensitivity (S(I)) times early or total insulin secretion. Glucose disappearance (K(G)) and S(I) were reduced in high-fat-fed mice at all time points. Total (50 min) insulin secretion was sufficiently increased at all time points to compensate for the reduced S(I), as judged by normal DI(50) (min). In contrast, early (10 min) insulin secretion was not sufficiently increased; DI(10) (min) was reduced after 1, 3, and 10 mo. S(G) was reduced after 1 wk; the reduction persisted throughout the study period. Thus glucose intolerance induced by high-fat diet is, in early phases, solely explained by reduced glucose effectiveness, whereas insufficient early insulin secretion is of importance after long-term feeding.  相似文献   

7.
8.
Human DNA polymerase delta (pol delta) is required for the synthesis of leading strand of simian virus 40 (SV40) DNA replication in vitro. Pol delta requires the accessory factors, proliferating cell nuclear antigen (PCNA), activator 1 (A1; also known as replication factor C [RF-C]), human single-stranded DNA binding protein (HSSB; also known as replication protein A [RP-A]) for the elongation of primed template DNA. Since pol delta has an associated 3'-5' exonuclease activity, the effect of pol delta accessory factors on the exonuclease activity was examined. The 3'-5' exonuclease activity was stimulated 8-10 fold by the addition of HSSB, and this stimulatory effect was preferential to HSSB since other SSBs from E. coli, T4 or adenovirus, had a little or no effect. The stimulatory effect of HSSB was markedly inhibited by the combined action of A1 and PCNA. Furthermore, the addition of deoxyribonucleoside triphosphates (dNTPs) completely abolished the effect of HSSB on the 3'-5' exonuclease activity even in the absence of pol delta accessory factors. These results suggest that accessory factors and dNTPs regulate both the polymerase and the 3'-5' exonuclease activities.  相似文献   

9.
Seventeen DNA dumbbells were constructed that have duplex sequences ranging in length from 14 to 18 base pairs linked on the ends by T4 single-strand loops. Fifteen of the molecules have the core duplexes with the sequences 5'G-T-A-T-C-C-(W-X-Y-Z)-G-G-A-T-A-C3', where (W-X-Y-Z) represents a unique combination of A.T, T.A, G.C, and C.G base pairs. The remaining two molecules have the central sequence (W-X-Y-Z) = A-C and A-C-A-C-A-C. These duplex sequences were designed such that the central sequences include different combinations of the 10 possible nearest-neighbor (n-n) stacks in DNA. In this sense the set of molecules is complete and serves as a model system for evaluating sequence-dependent local stability of DNA. Optical melting curves of the samples were collected in 25, 55, 85, and 115 mM [Na+], and showed, regardless of solvent ionic strength, that the transition temperatures of the dumbbells vary by as much as 14 degrees for different molecules of the set. Results of melting experiments analyzed in terms of a n-n sequence-dependent model allowed evaluation of nine independent linear combinations of the n-n stacking interactions in DNA as a function of solvent ionic strength. Although there are in principle 10 possible different n-n interactions in DNA, these 10 are not linearly independent and therefore can not be uniquely determined. For molecules with ends, there are 9 linearly independent combinations, as opposed to circular or semiinfinite repeating copolymers where only 8 linear combinations of the 10 possible n-n interactions are linearly independent. The n-n interactions are presented as combinations of the deviations from average stacking for the 5'-3' base-pair doublets, delta Gi, and reveal several interesting features: (1) Titratable changes in the values of delta Gi with changing salt environment are observed. In all salts the most stable unique combination is delta G4 = (delta GGpC+delta GCpG)/2, and the least stable is the GpG/CpC stack, delta G2 = delta GGpG/CpC. (2) The chi 2 values of the fits of the evaluated delta Gi's to experimental data increased with decreasing [Na+], suggesting that significant interactions beyond nearest neighbors become more pronounced, particularly at 25 nM Na+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
NMR signal assignments for DNA oligomers have been performed by the well-established sequential assignment procedures based on NOESY and COSY. The H4'/H5'/H5' resonance region is congested and difficult to analyze without the use of isotope-labeled DNA oligomers. Here a DNA dodecamer constructed with 2'-deoxy[5'-(13)C]ribonucleotides, 5'-d(*C*G*C*G*A*A*T*T*C*G*CG)-3' (*N = [5'-(13)C]Nucleotide), was prepared in an effort to analyze the H4'/H5'/H5' resonance region by 2D 1H-13C HMQC-NOESY. In the C5' and H1' resonance region, weak and strong cross peaks for C5'(i)-H1'(i) and C5'(i)-H1'(i-1), respectively, were found, thus enabling the sequential assignment within this region. A similar sequential assignment route was found between C5' and H2'. Proton pair distances evaluated from the canonical B-DNA as well as A-DNA indicated that these sequential-assignment routes on a 2D 1H-13C HMQC-NOESY spectrum work for most nucleic acid stem regions.  相似文献   

11.
Minimal model analysis of intravenous glucose tolerance test (IVGTT) glucose and insulin concentrations offers a validated approach to measuring insulin sensitivity, but model identification is not always successful. Improvements may be achieved by using alternative settings in the modeling process, although results may differ according to setting, and care must be exercised in combining results. IVGTT data (12 samples, regular test) from 533 men without diabetes was modeled by the traditional nonlinear regression (NLR) approach, using five different permutations of settings. Results were evaluated with reference to the more robust Bayesian hierarchical (BH) approach to model identification and to the proportion of variance they explained in known correlates of insulin sensitivity (age, BMI, blood pressure, fasting glucose and insulin, serum triglyceride, HDL cholesterol, and uric acid concentration). BH analysis was successful in all cases. With NLR analysis, between 17 and 35 IVGTTs were associated with parameter coefficients of variation (PCVs) for minimal model parameters S(I) (insulin sensitivity) and S(G) (glucose effectiveness) of >100%. Systematic use of each different approach in combination reduced this number to five. Mean (interquartile range) S(I)(NLR) was then 3.14 (2.29-4.63) min(-1).mU(-1).l x 10(-4) and 2.56 (1.74-3.83) min(-1).mU(-1).l x 10(-4) for S(I)(BH) (correlation 0.86, P < 0.0001). S(I)(NLR) explained, on average, 10.6% of the variance in known correlates of insulin sensitivity, whereas S(I)(BH) explained 8.5%. In a large body of data, which BH analysis demonstrated could be fully identified, use of alternative modeling settings in NLR analysis could substantially reduce the number of analyses with PCVs >100%. S(I)(NLR) compared favorably with S(I)(BH) in the proportion of variance explained in known correlates of insulin sensitivity.  相似文献   

12.
Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration difference was increased in T during the clamp but not in S subjects in both adipose tissue and muscle [adipose tissue: step I (n = 8), 0.48 +/- 0.18 mM (T), 0.23 +/- 0.11 mM (S); step II (n = 8), 0.19 +/- 0.09 (T), -0.09 +/- 0.24 (S); step III (n = 5), 0.47 +/- 0.24 (T), 0.06 +/- 0.28 (S); (T: P < 0.001, S: P > 0.05); muscle: step I (n = 4), 1. 40 +/- 0.46 (T), 0.31 +/- 0.21 (S); step II (n = 4), 1.14 +/- 0.54 (T), -0.08 +/- 0.14 (S); step III (n = 4), 1.23 +/- 0.34 (T), 0.24 +/- 0.09 (S); (T: P < 0.01, S: P > 0.05)]. Interstitial glycerol concentration decreased faster in T than in S subjects [half-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P < 0.05]. In conclusion, training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis in subcutaneous adipose tissue. Insulin per se does not influence subcutaneous adipose tissue blood flow.  相似文献   

13.
DNA polymerase I (pol I) from Escherichia coli has three well-defined activities: DNA polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. We have raised monoclonal antibodies to pol I which selectively neutralize each of these three activities, thus supporting the model of separate active sites for each activity, heretofore exclusively demonstrated with proteolytic fragments of pol I. Antibodies from each class could bind pol I in the presence of antibodies of another class, indicating the existence of significant spatial separation between each of the three sites. In addition, several of the neutralizing antibodies were able to distinguish particular activities of the 5'-3' exonuclease. One of them, for example, inhibited the RNase H activity but not the DNase activity. Two other antibodies could, in addition to inhibiting the polymerase and the 3'-5' exonuclease, either stimulate or inhibit the 5'-3' exonuclease depending upon the assay conditions, particularly the ionic strength.  相似文献   

14.
The insulin response of 10 lean and 23 obese subjects with lag-type and borderline O.G.T.T. has been studied. The O.G.T.T. was interpreted according to the criteria of Fajans and Conn. The maximum increase and the area of increase were examined both for blood glucose and plasma I.R.I., and the corresponding I.R.I./glucose ratios calculated. The shape of the insulin response curve is similar to that of glucose curve. The I.R.I./glucose ratios are decreased in the lag-type curves as compared to borderline in the lean subjects while we observed opposite results in obese ones. A possible physiopathological interpretation of this curves is proposed.  相似文献   

15.
Difference spectroscopy was used to determine the equilibrium constants and thermodynamic parameters for the monomer-dimer association of bovine and porcine insulin and bovine proinsulin at pH 2.0 and 7.0. At pH 2 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine insulin were found to be -6.6 kcal/mol, -18 cal/mol-deg, and -12 kcal/mol, respectively. Porcine insulin behaved similarly to bovine insulin in its dimerization properties in that delta G degree 25, delta S degree, and delta H degree were found to be -6.8 kcal/mol, -14 cal/mol-deg, and -11 kcal/mol, respectively. At pH 7 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine insulin were found to be -7.2 kcal/mol, -16 cal/mol/deg, and -12 kcal/mol, respectively. At pH 7.0 delta G degree 25, delta S degree, and delta H degree for dimerization of porcine insulin were -6.7 kcal/mol, -11.6 cal/mol-deg, and -10 kcal/mol, respectively. The similarity in the thermodynamic parameters of both insulin species at the different pH's suggests that there are minimal structural changes at the monomer-monomer contact site over this pH range. The dimerization of both insulin species is under enthalpic control. This may suggest that the formation of the insulin dimer is not driven by hydrophobic bonding but, rather, is driven by the formation between subunits of four hydrogen bonds in an apolar environment. At pH 2 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine proinsulin were found to be -5.3 kcal/mol, -26 cal/mol-deg, and -13 kcal/mol, respectively. At pH 7 delta G degree 25, delta S degree, and delta H degree for dimerization of proinsulin were -5.9 kcal/mol, -4.2 cal/mol-deg, and -7.2 kcal/mol, respectively. Although the presence of the C-peptide on proinsulin does not drastically affect the overall free energy change of dimer formation (as compared to insulin), the other thermodynamic parameters are rather drastically altered. This may be because of electrostatic interactions of groups on the C-peptide with groups on the B-chain which are near the subunit contact site in the insulin dimer.  相似文献   

16.
Intravenous glucose tolerance tests were undertaken on fed twin-pregnant ewes at about 120 days of gestation by injecting 0.4 g glucose per kilogram of live weight, then measuring glucose and insulin concentrations in plasma over the next 2 h. An insulin resistance index was calculated from the product of T1/2 for glucose disappearance and the plasma insulin concentrations integrated over time. Approximately 10 days later, the ewes were starved to induce ovine pregnancy toxaemia. During this period, the course of the hypoglycaemia and ketonaemia were followed by measuring metabolite concentrations in jugular blood samples obtained every 2-3 days. The existence of dehydration, acid-base imbalance and renal failure was also determined from packed cell volumes, serum CO2 content and serum concentrations of urea, creatinine and inorganic phosphate. Ewes that became recumbent and moribund with the disease were classified as susceptible whereas those asymptomatic after 10 days were classified as non-susceptible. Seven susceptible ewes had significantly higher insulin resistance indices (2043 +/- 670 s.d.) than did six non-susceptible ewes (1261 +/- 433 s.d.). It was concluded that poor control of glucose homeostasis may be an important predisposing factor in pathogenesis of the disease.  相似文献   

17.
18.
The synthesis of an oligonucleotide (ODN) modified with pyrene (pyr) on the 5'-phosphate is described. The ODN and pyrene are joined through a linker composed of four methylene groups. Modification of the oligonucleotide was effected via condensation of the 2-cyanoethyl N,N-diisopropylphosphoramidite of 4-(1-pyrenyl)butanol (pyr-m4OPAm, 2) with the 5'-OH of an ODN. This derivative is suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The properties of the 5'-(pyr-m4)d(T)15 (3) and the duplex it formed with d(A)15 were investigated by fluorescence and absorbance spectroscopy. The pyrene fluorescence in the modified duplex was quenched 96.3% relative to an identical concentration of free 4-(1-pyrenyl)butanol. The ultraviolet spectrum of the 5'-(pyr-m4)-d(T)15 and 5'-(pyr-m4)-d(T)15-d-(A)15 modified duplex, in the 320-360-nm region, was red-shifted 6 nm relative to the free 4-(1-pyrenyl)-butanol. The Tm values of the unmodified and modified duplexes at 0.1 M NaCl were 34.9 and 41.9 degrees C, respectively. The pyrene-induced stabilization corresponds to a free energy change (delta delta G degrees) of -2.6 kcal/mol.  相似文献   

19.
Gel-based oligonucleotide microarray approach was developed for quantitative profiling of binding affinity of a protein to single-stranded DNA (ssDNA). To demonstrate additional capabilities of this method, we analyzed the binding specificity of ribonuclease (RNase) binase from Bacillus intermedius (EC 3.1.27.3) to ssDNA using generic hexamer oligodeoxyribonucleotide microchip. Single-stranded octamer oligonucleotides were immobilized within 3D hemispherical gel pads. The octanucleotides in individual pads 5'-{N}N(1)N(2)N(3)N(4)N(5)N(6){N}-3' consisted of a fixed hexamer motif N(1)N(2)N(3)N(4)N(5)N(6) in the middle and variable parts {N} at the ends, where {N} represent A, C, G and T in equal proportions. The chip has 4096 pads with a complete set of hexamer sequences. The affinity was determined by measuring dissociation of the RNase-ssDNA complexes with the temperature increasing from 0 degrees C to 50 degrees C in quasi-equilibrium conditions. RNase binase showed the highest sequence-specificity of binding to motifs 5'-NNG(A/T/C)GNN-3' with the order of preference: GAG > GTG > GCG. High specificity towards G(A/T/C)G triplets was also confirmed by measuring fluorescent anisotropy of complexes of binase with selected oligodeoxyribonucleotides in solution. The affinity of RNase binase to other 3-nt sequences was also ranked. These results demonstrate the applicability of the method and provide the ground for further investigations of nonenzymatic functions of RNases.  相似文献   

20.
We analysed the effects of high glucose in rat1 cells overexpressing insulin receptor. High (25 mM) glucose inhibited insulin-stimulated tyrosine kinase activity completely at insulin concentrations of 1 and 5 ng/ml. Decapeptides modelled on insulin receptor sequences surrounding serines 1035 and 1270 were found to inhibit protein kinase C activity in vitro and after microinjection into cells blocked the inhibition of mitogenesis induced by glucose. Purification of receptor from 3T3L1 adipocytes revealed that only the isoenzymes beta1, betaII and delta were detected. The site of the interaction was mapped to the catalytic domain of betaII. These results demonstrate that the inhibition of insulin receptor tyrosine kinase activity can be ameliorated using insulin receptor peptide sequences and there is constitutive and differential interaction of individual PKC isoenzymes with the insulin receptor, and in the case of betaII, this interaction maps to the catalytic domain rather than the regulatory domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号