首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When dissociated cells of neural retinae of 8-day-old chick embryos were cultured, monolayer sheets of epithelial cells were obtained. These cells proliferated actively. After about 30 days of culture, both lentoid bodies and pigment cells were differentiated in all plates. In the second and the third generation cultures, both differentiations were also observed. Lentoid bodies showed positive immunofluorescence for fluorescein-isothiocyanate-conjugated antiserum against δ-crystallin. Molecular constituents of lentoid bodies were very similar to those of lenses developing in situ, as revealed by immunodiffusion tests. Several lines of evidence for the “neural retinal” origin of lentoid bodies, as opposed to their being derived from lens cells inadvertently included in the original culture inocula are given. Some implications of the present results for the problem of “determination” are discussed.  相似文献   

2.
Dissociated cells of neural retinas of 3.5-day-old chick embryos (stages 20–21) were cultured as a monolayer in order to examine their differentiation in vitro. These cells started to grow actively soon after inoculation and formed a confluent sheet within which neuroblast-like cells with long cytoplasmic processes were differentiated by 8 days. At about 16 days the differentiation of both lentoid bodies and foci of pigment cells was observed, while neuronal structure disappeared. The numbers of lentoid bodies and foci of pigmented cells continued to increase up to 30 days, when primary cultures were terminated. The increase in δ-crystallin content, as measured by quantitative immunoelectrophoresis assay using rabbit antiserum against δ-crystallin, was consistent with the increase in the number of lentoid bodies in cultures. The amount of α-crystallin per culture, estimated by the same technique as above, reached a maximum at 16 days and decreased slightly during further culture. The differentiation of both lentoid bodies and pigment cells was observed also in cultures of the second generation. The results demonstrate that cells of the undifferentiated neuroepithelium of 3.5-day-old embryonic retinas can achieve at least three differentiations, neuronal, lens, and pigment cells, in vitro. We discuss several differences between the present results and the previous ones from in vitro cultures of 8- to 9-day-old embryonic neural retinas.  相似文献   

3.
Dissociated cells of the lens epithelium of newly hatched chickens were cultured in vitro to investigate whether cells actively grown in culture retain their own differentive entiative traits to form lens fibers. After an exponential growth phase of the flattened epithelial cells, a number of “islets” of smaller epithelial cells with polygonal shape appeared. Along the periphery of these islets, the characteristic morphological change which leads to the formation of spherical bodies was observed. Electron microscopic observation showed the differentiation of lens fibers in these spherical bodies comparable to those in the lens in situ. Accumulation of δ-chrystallin was confirmed in such “lentoid” bodies. Outgrowth of the lens epithelial cells was maintained in in vitro culture up to about 50 days with several subculturings. The formation of lentoid bodies occurred in each subculture generation, which started from a homogeneous population of flattened epithelial cells. The present culture conditions permit the maintenance of such a population of cells that have a high growth potential and stably retains their differentiative trait to form lens fiber, even after repeated replication under in vitro conditions.  相似文献   

4.
Neural retinal cells of 3.5-day-old quail embryos were cultured as a monolayer to examine their potentials for differentiation in vitro. The "foreign" differentiation into lentoid and pigment cells was much affected by the choice of medium (Eagle's MEM and Ham's F–12); in Eagle's MEM, neural retinal cells differentiated extensively into lentoid bodies and pigment cells, as previously reported in cultures of chick neural retinal cells, while in Ham's F–12, though the cells proliferated as well as in Eagle's MEM, the "foreign" differentiation is inhibited. When primary cultures were transferred to secondary cultures, the occurrence of "foreign" differentiation did not depend on the medium used for the primary culturing, but wholly on the medium used for secondary cultures. This difference in differentiation in two different media was quantitatively substantiated by measuring the amounts of α-, δ-crystallins and melanins of cultured cells.  相似文献   

5.
Dissociated cells of brains (tel- and diencephalons) of 3.5-day-old chick embryos were cultivated in vitro under the cell culture conditions which are known to be permissive for neural retinal cells (NR cells) to transdifferentiate into lens and/or pigmented epithelial cells (PE cells). The differentiation of lentoid bodies (LBs) with lens-specific (δ-crystallin and PE cells with melanin granules was observed in such brain cultures.
LBs appeared in two different phases, i. e., 2–3 days and 16–30 days of cultivation, and after 40 days of culture these structures were formed in all 60 culture dishes. Sometimes, LBs were observed in foci of PE cells formed during earlier stages of brain cultures. When similar brain cultures were prepared with older embryos of 5-, 8.5-, 14-, and 16-days of incubation, no differentiation of lens and PE cells was observed.  相似文献   

6.
The time and place of the accumulation of alpha A-, beta B1- and gamma-crystallin RNA in the developing rat lens have been studied by in situ hybridization. alpha A- and gamma-crystallin RNA were first detected in the lens vesicle, while beta B1-crystallin RNA could be seen only after elongation of the primary fiber cells. Both beta B1- and gamma-crystallin RNA were confined to the fiber cells of fetal lenses, while alpha A-crystallin mRNA could also be detected in the epithelial cells. A quantification of the hybridization pattern obtained in the differentiation zone of the newborn rat lens showed that alpha A-crystallin RNA is concentrated in the cortical zone. alpha B-crystallin mRNA has the same distribution pattern. beta B1-crystallin RNA was relatively poorly detectable by in situ hybridization in both fetal and newborn rat lenses. The grain densities obtained with this probe increased from the periphery of the lens toward the interior, indicating that beta B1-crystallin RNA accumulated during differentiation of the secondary fiber cells. A similar accumulation pattern was obtained for gamma-crystallin mRNA, but, unexpectedly, this RNA could also be detected in the elongating epithelial cells. Our results show that gamma-crystallin RNA starts to accumulate as soon as visible elongation of epithelial cells occurs, during differentiation of the primary as well as the secondary fiber cells.  相似文献   

7.
Epithelial cells from hyperplastic lenses of a strain of chicks (Hy-1) selected for high growth rate were dissociated and cultured in vitro and compared with lens epithelial cells from a normal strain (N) in similar conditions. The hyperplastic lens cells showed remarkable motility and adhesiveness after dissociation and formed cell aggregates of various sizes before attaching to the substrate, giving a rather low plating efficiency. The lens structures (lentoid bodies) developed in partially confluent cultures of Hy-1 cells at least three days earlier than those in the cultures from normal control cells, in which the lens structures developed only after the cultures reached confluence. The results of culture at low cell density showed that the Hy-1 cell population consisted of at least two cell types different from each other in growth capacity. These striking differences in in vitro behaviour of dissociated cells from normal and hyperplastic lens epithelia and the results of clonal culture are discussed in relation to the possible mechanisms of abnormal morphogenesis and growth which are likely to be involved in the development of the hyperplastic lens in situ .  相似文献   

8.
We have used a retroviral vector (RCAS) to overexpress wild-type chicken c-Jun or a deletion mutant of chicken c-Jun (JunΔ7) lacking the DNA binding region to investigate the possible role of c-Jun in lens epithelial cell proliferation and differentiation. Both constructs were efficiently expressed in primary cultures of embryonic chicken lens epithelial cells. Overexpression of c-Jun increased the rate of cell proliferation and greatly delayed the appearance of “lentoid bodies,” structures which contain differentiated cells expressing fiber cell markers. Excess c-Jun expression also significantly decreased the level of βA3/A1-crystallin mRNA, without affecting αA-crystallin mRNA. In contrast, the mutated protein, JunΔ7, had no effect no proliferation or differentiation but markedly increased the level of αA-crystallin mRNA in proliferating cell cultures. These results suggest that c-Jun or Jun-related proteins may be negative regulators of αA- and βA3/A1-crystallin genes in proliferating lens cells.  相似文献   

9.
Dissociated cells of neural retinas of 3.5-day-old chick embryos differentiated into “lentoid bodies” within about 10–12 days when cultured in vitro. Protein synthesis of these cultured cells was studied with the use of SDS-polyacrylamide gel electrophoresis, affinity chromatography, and autoradiography combined with immunological techniques. Incorporation of [14C]leucine into total proteins, α-crystallin, and δ-crystallin was estimated after increasing times of culture up to about 30 days. Isotope incorporation into δ-crystallin was detected at 9 days, and it increased sevenfold after another 17 days. α-Crystallin was also first detected at 9 days, but its relative content reached a maximum at 12 days and then decreased gradually. The ratio of δ-crystallin synthesis to total protein synthesis increased up to 40% at 26 days, while that of α-crystallin synthesis remained 3% throughout the culture period. These results show that lens differentiation from neural retinal cells is associated with the preferential synthesis of lens crystallins, particularly of δ-crystallin.  相似文献   

10.
Embryonic chicken lenses, which had been disrupted by trypsin, were grown in culture. These cultures mimic lens development as it occurred in vivo, forming lens-like structures known as lentoids. Using a variety of techniques including electron microscopic analysis, autoradiography, immunofluorescence, and polyacrylamide gel electrophoresis, it was shown that the lentoid cells had many characteristics in common with the differentiated cells of the intact lens, the elongated fiber cells. These characteristics included a shut off of DNA synthesis, a loss of cell organelles, an increase in cell volume, an increase in δ-crystallin protein, and the development of extensive intercellular junctions. The cultures began as a simple epithelial monolayer but then underwent extensive morphogenesis as they differentiated. This morphogenesis involved three distinctive morphological types which appeared in sequence as an epithelial monolayer of polygonal shaped cells with pavement packing, elongated cells oriented end to end, and the multilayered, multicellular lentoids. These distinct morphological stages of differentiation in culture mimic morphogenesis as it occurs in the lens.  相似文献   

11.
The effects of three different culture media (Eagle's MEM, F-12 and L-15) on the transdifferentiation of 8-day chick embryonic neural retina into lens cells, were examined with respect to the expression of two phenotypes. One type referred to neuronal specificity (as represented by the level of cholineacetyl-transferase, CAT, activity) and the other to lens specificity (as represented by content of α-and δ-crystallin). In 7-day cell cultures before the visible differentiation of lentoid bodies, CAT activity was detected in all media. But, its level was about 9 times higher in cultures with L-15 than in those with MEM and 3 times higher than in F-12. In 26-day cultures, CAT activity was practically undetectable. The production of α-and δ-crystallin was detected in cultures at 26 days. There were quantitative differences in the crystallin content with different media, and it was highest in cultures with L-15. The results indicate that conditions most favourable to the maintenance of the neuronal specificity in cell cultures of neural retina, can also support the most extensive transdifferentiation. The possibility of direct transdifferentiation of once neuronally specified cells into lens cells in cultures with L-15 has been suggested to explain the present results.  相似文献   

12.
Dissociated cells of lens epithelia of adult rats were monolayerly cultured in vitro. After about 15–20 days' period of active cell growth, such characteristic structures that correspond to "lentoid bodies" described previously in chick cultures were formed. These structures consisted of elongated cells, ultrastructural profile of which was similar with lens fiber. The presence of gamma-crystallin, a marker molecule specific to mature lens fiber, was confirmed in these elongated cells by means of fluorescent antibody technique. The differentiation of lens fiber in vitro was also recognized in clones originating from single lens epithelial cells cultured at very low cell density.  相似文献   

13.
A culture system was developed which permitted the differentiation of chicken lens epithelial cells to lentoid bodies which contained several cell layers, accumulated high levels of delta-crystallin, and produced extensive gap junctions. This differentiation process was prevented when the cells were infected with a temperature-sensitive src mutant of Rous sarcoma virus and maintained at the permissive temperature. These transformed cells continued to proliferate and also synthesized the major lens gap junction protein, MP28, at near-normal rates. However, this MP28 was not assembled to produce gap junctions. Cultures shifted to the nonpermissive temperature formed lentoid bodies similar to those in uninfected lens cultures, including the establishment of gap junctions containing MP28.  相似文献   

14.
The lens-specific proteins alpha and delta crystallins and lentoid bodies, structures that follow a differentiation pathway similar to that of the lens, regularly appear after 4 to 5 weeks in quail embryo neuroretina monolayer cultures. We have investigated the effects of the avian oncogenic retroviruses Mill Hill 2 and Rous sarcoma virus on this process. Quail embryo neuroretina cells transformed by Mill Hill 2 virus were established into permanent cultures that synthesized alpha and delta crystallins and contained stem cells for the production of lentoid bodies. In contrast, transformation with the Rous sarcoma virus mutant tsNY-68 blocked the appearance of mRNA crystallins, but cytoplasmic alpha and delta crystallin mRNA and alpha crystallin appeared 44 h after a shift to the nonpermissive temperature. However, delta crystallins and lentoid bodies were only present after 7 days. The crystallins of transformed quail neuroretina cultures were immunologically indistinguishable from those of quail lenses and of normal quail embryo neuroretina cultures.  相似文献   

15.
Increasing specialization for δ-crystallin synthesis is a prominent feature of the differentiation of chick lens epithelial cells into lens fiber cells and can be studied in cultured embryonic lens epithelia. Quantitation of δ-crystallin mRNA by molecular hybridizaton to a [3H]DNA complementary to δ-crystallin mRNA demonstrates that differentiation, both in ovo and in tissue culture, is associated with the accumulation of δ-crystallin mRNA. In the cultures, there is an overall stimulation of protein synthesis, including δ-crystallin mRNA during the first 5 hr in vitro. Between 5 and 24 hr in vitro there is a differential stimulation of δ-crystallin synthesis and an accumulation of δ-crystallin mRNA that can quantitatively account for this stimulation.  相似文献   

16.
Clonal cultures with 1,000–3,000 cells were prepared from cells harvested from high density cultures of neural retina of 8-day-old chick embryos. About 1.14% and 0.31% of inoculated cells developed into recogniziable colonies in Eagle's MEM and in Ham's F-12 supplemented with fetal calf serum respectively. Of these colonies, lentoid bodies of authentic lens nature were differentiated in 10% and 33.52% in MEM and F-12 respectively. Cells harvested from high density cultures of the anterior and posterior portions of the neural retina were clonally cultured. Plating efficiency was much higher in the anterior cells than in the posterior ones and clonies with lentoid differentiation were developed only in clonal cultures of the anterior cells.  相似文献   

17.
Presbyopia, the inability to focus up close, affects everyone by age 50 and is the most common eye condition. It is thought to result from changes to the lens over time making it less flexible. We present evidence that presbyopia may be the result of age-related changes to the proteins of the lens fibre cells. Specifically, we show that there is a progressive decrease in the concentration of the chaperone, α-crystallin, in human lens nuclei with age, as it becomes incorporated into high molecular weight aggregates and insoluble protein. This is accompanied by a large increase in lens stiffness. Stiffness increases even more dramatically after middle age following the disappearance of free soluble α-crystallin from the centre of the lens. These alterations in α-crystallin and aggregated protein in human lenses can be reproduced simply by exposing intact pig lenses to elevated temperatures, for example, 50 °C. In this model system, the same protein changes are also associated with a progressive increase in lens stiffness. These data suggest a functional role for α-crystallin in the human lens acting as a small heat shock protein and helping to maintain lens flexibility. Presbyopia may be the result of a loss of α-crystallin coupled with progressive heat-induced denaturation of structural proteins in the lens during the first five decades of life.  相似文献   

18.
19.
The possible multipotential nature of the neural retina of early chick embryos was examined by the technique of clonal cell culture. Cultures were prepared from cells dissociated from freshly excised neural retinas of 3.5-day-old chick embryos or from cells harvested from primary highdensity cultures. The following four colony types were obtained: colonies differentiating into “lentoid bodies”; colonies with pigment cells; colonies with both “lentoid bodies” and pigment cells; and colonies comprised entirely of unidentifiable cells. Neuronal differentiation occurred frequently in the early stages of culture (up to about 10 days). In some of these neuronal colonies, “lentoid bodies” and, rarely, both “lentoid bodies” and pigment cells differentiated after a further culture period of up to 30 days. Secondary colonies established from primary colonies after 9–10 days demonstrated that these original colonies fell into four different categories: those giving rise to secondary colonies containing only “lentoid bodies,” those giving rise to pigmented colonies only, those developing both lentoid and pigmented colonies, and finally those which gave rise to secondary colonies of all three types, lentoid, pigmented, and mixed colonies. When primary pigmented colonies were recloned at about 30 days after inoculation, the differentiated pigment cells transdifferentiated into lens. Whether multispecific colonies were really of clonal origin or not is discussed. The possible presence of a multipotent progenitor cell able to give rise to multispecific clones in the neural retina of 3.5-day-old chick embryos is suggested. A sequence of differentiation starting from multipotent neural retinal cells to be terminated with lens through the differentiation of neuronal and pigment cells is hypothetically proposed.  相似文献   

20.
We previously described cultures of chick embryo lens cells which displayed a marked degree of differentiation. In this report, the junctions found between the lens fiber-like cells in the differentiated "lentoids" are characterized in several ways. Thin-section methods with electron microscopy first demonstrated that numerous, large junctions between lentoid cells accompanied the other differentiated features of these cells. Freeze-fracture techniques, including quantitative analysis, then revealed that (a) junctional particles were loosely arranged as is typical of fiber cells, (b) the population of individual junctional areas in culture was indistinguishable from that found in 10- to 12-day chick embryo lenses, and (c) apparent junction formation occurred during the development of the lens cells, with lacy arrays of particles being associated with fiber-like junctions. In addition, gap junctions with hexagonally packed particles, typical of lens epithelial cells, largely disappeared during the course of differentiation. Injection of tracer dyes into lentoid cells resulted in rapid intercellular movement of dye, consistent with functional cell-to-cell channels connecting lentoid cells. During the development of the lens cells in culture, as junction formation occurred, an increase of approximately eight-fold in MP28 protein was observed within the cells. These combined results indicate that (a) extensive lens fiber junctions and functional cell-to-cell channels are found between differentiated lentoid lentoid cells in vitro, (b) lens fiber junctions appear to form during the course of lens cell differentiation in culture, (c) a significant increase occurs in the putative junctional protein before the cultures are highly developed, (d) the increased levels of MP28 and junction formation may be required for the full expression of the differentiated state in the lens fiber cell, and (e) this culture system should prove to be valuable for additional experiments on lens junctions and for other studies requiring the development of lens fiber cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号