首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10–100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment.  相似文献   

2.
A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.  相似文献   

3.
A novel minicolumn chromatographic method to monitor the production of inclusion bodies during fermentation and an enzyme-linked immunosorbent assay (ELISA) system allowing direct analysis of the particles with surface-displayed antigens are described. A 33-kDa protein containing 306 amino acids with three sulfur bridges produced as inclusion bodies was labeled with polyclonal antibodies against 15 amino acid (anti-A15) and 17 amino acid (anti-B17) residues at the N- and C-terminal ends of the protein, respectively. Labeled particles were bound to macroporous monolithic protein A-cryogel adsorbents inserted into the open-ended wells of a 96-well plate (referred to as protein A-cryogel minicolumn plate). The concept behind this application is that the binding degree of inclusion bodies from lysed fermentation broth to the cryogel minicolumns increases with an increase in their concentration during fermentation. The technique allowed us to monitor the increase in the production levels of the inclusion bodies as the fermentation process progressed. The system also has a built-in quality parameter to ensure that the target protein has been fully expressed. Alternatively, inclusion bodies immobilized on phenyl-cryogel minicolumn plate were used in indirect ELISA based on anti-A15 and anti-B17 antibodies against terminal amino acid residues displayed on the surface of inclusion bodies. Drainage-protected properties of the cryogel minicolumns allow performance of successive reactions with tested immunoglobulin G (IgG) samples and enzyme-conjugated secondary IgG and of enzymatic reaction within the adsorbent.  相似文献   

4.
Production of recombinant proteins as inclusion bodies is an important strategy in the production of technical enzymes and biopharmaceutical products. So far, protein from inclusion bodies has been recovered from the cell factory through mechanical or chemical disruption methods, requiring additional cost-intensive unit operations. We describe a novel method that is using a bacteriophage-derived lysis protein to directly recover inclusion body protein from Escherichia coli from high cell density fermentation process: The recombinant inclusion body product is expressed by using a mixed feed fed-batch process which allows expression tuning via adjusting the specific uptake rate of the inducing substrate. Then, bacteriophage ΦX174-derived lysis protein E is expressed to induce cell lysis. Inclusion bodies in empty cell envelopes are harvested via centrifugation of the fermentation broth. A subsequent solubilization step reveals the recombinant protein. The process was investigated by analyzing the impact of fermentation conditions on protein E-mediated cell lysis as well as cell lysis kinetics. Optimal cell lysis efficiencies of 99% were obtained with inclusion body titers of >2.0 g/l at specific growth rates higher 0.12 h?1 and inducer uptake rates below 0.125 g/(g × h). Protein E-mediated cell disruption showed a first-order kinetics with a kinetic constant of ?0.8 ± 0.3 h?1. This alternative inclusion body protein isolation technique was compared to the one via high-pressure homogenization. SDS gel analysis showed 10% less protein impurities when cells had been disrupted via high-pressure homogenization, than when empty cell envelopes including inclusion bodies were investigated. Within this contribution, an innovative technology, tuning recombinant protein production and substituting cost-intensive mechanical cell disruption, is presented. We anticipate that the presented method will simplify and reduce the production costs of inclusion body processes to produce technical enzymes and biopharmaceutical products.  相似文献   

5.
The 42 kDa cleavage product from the carboxyl end of the Plasmodium falciparum merozoite surface protein 1 (MSP1(42)) is an important blood-stage malaria vaccine target. Several recombinant protein expression systems have been used for production of MSP1(42) including yeast (Saccharomyces cerevisiae and Pichia pastoris), Escherichia coli, baculovirus and transgenic animals. To date, all of the reported recombinant proteins include a 6 x His affinity tag to facilitate purification, including three MSP1(42) clinical grade proteins currently in human trials. Under some circumstances, the presence of the 6 x His tag may not be desirable. Therefore, we were interested to produce clinical grade MSP1(42) without a 6 x His affinity tag from E. coli inclusion bodies. We produced a recombinant MSP1(42) with a P. falciparum FUP (Uganda-Palo Alto) phenotype which accounts for a substantial proportion of the MSP1(42) protein observed in African isolates. EcMSP1(42)-FUP was produced in E. coli inclusion bodies by high cell mass induction with IPTG using 5 L and 60 L bioreactors. Isolated inclusion bodies were solubilized in 8M guanidine-HCl and the EcMSP1(42)-FUP protein refolded by rapid dilution. Refolded EcMSP1(42)-FUP was purified using hydrophobic interaction chromatography, anion exchange chromatography, and size exclusion chromatography, and subject to biochemical characterization for integrity, identity, and purity. Endotoxin and host cell protein levels were within acceptable limits for human use. The process was successfully transferred to pilot-scale production in a cGMP environment. A final recovery of 87.8 mg of clinical-grade material per liter of fermentation broth was achieved. The EcMSP1(42)-FUP clinical antigen is available for preclinical evaluation and human studies.  相似文献   

6.
Yeasts combine the ease of genetic manipulation and fermentation of a microorganism with the capability to secrete and modify foreign proteins according to a general eukaryotic scheme. Their rapid growth, microbiological safety, and high-density fermentation in simplified medium have a high impact particularly in the large-scale industrial production of foreign proteins, where secretory expression is important for simplifying the downstream protein purification process. However, secretory expression of heterologous proteins in yeast is often subject to several bottlenecks that limit yield. Thus, many studies on yeast secretion systems have focused on the engineering of the fermentation process, vector systems, and host strains. Recently, strain engineering by genetic modification has been the most useful and effective method for overcoming the drawbacks in yeast secretion pathways. Such an approach is now being promoted strongly by current post-genomic technology and system biology tools. However, engineering of the yeast secretion system is complicated by the involvement of many cross-reacting factors. Tight interdependence of each of these factors makes genetic modification difficult. This indicates the necessity of developing a novel systematic modification strategy for genetic engineering of the yeast secretion system. This mini-review focuses on recent strategies and their advantages for systematic engineering of yeast strains for effective protein secretion.  相似文献   

7.
While Escherichia coli expression systems have been widely utilized for the production of heterologous proteins, these systems have limitations with regard to the production of particular protein products, including poor expression, expression of insoluble proteins into inclusion bodies, and/or expression of a truncated product. Using the surface protein expression (SPEX) system, chromosomally integrated heterologous genes are expressed and secreted into media by the naturally competent gram-positive organism Streptococcus gordonii. After E. coli turned out to be an inappropriate expression system to produce sufficient quantities of intact product, we successfully utilized SPEX to produce the heterologous antigen BH4XCRR that is designed from sequences homologous to the S. pyogenes M-protein C-repeat region. To further enhance production of this product by S. gordonii, we sought to develop a novel system for the production and secretion of heterologous proteins. We observed that under various growth conditions, S. gordonii secreted high levels of a 172 kDa protein, which was identified by N-terminal sequence analysis as the glucosyltransferase GTF. Here we report on the development of a plasmid-based expression system, designated as PLEX, which we used to enhance production of BH4XCRR by S. gordonii. A region from the S. gordonii chromosome that contains the positive regulatory gene rgg, putative gtfG promoter, and gtfG secretion-signal sequence was cloned into the E. coli/Streptococcus shuttle plasmid pVA838. Additionally, the bh4xcrr structural gene was cloned into the same plasmid downstream and in-frame with rgg and gtfG. This plasmid construct was transformed into S. gordonii and BH4XCRR was detected in culture supernatants from transformants at greater concentrations than in supernatants from a SPEX strain expressing the same product. BH4XCRR was easily purified from culture supernatant using a scalable two-step purification process involving hydrophobic-interaction and gel-filtration chromatography.  相似文献   

8.
优化了重组人血管内皮抑制素的E. coli表达体系的发酵条件。利用E. coli表达体系得到了较高的产量,在9h左右的发酵周期内达到OD600值140,包涵体蛋白产量为3 g/L。主要优化了异丙基-β-D-硫代半乳糖苷(Isopropyl-β-D-thiogalactopyranoside, IPTG)的终浓度、诱导时间、培养温度、补料控制方法等条件,并且在诱导后提高培养温度到40℃,在非常短的培养周期内达到了高密度培养的目的。利用E. coli表达,继而通过复性获得有活性的重组人血管内皮抑制素,成本低、生产过程稳定可控、得到的蛋白性质稳定,符合工业生产的需要。  相似文献   

9.
Alphavirus vectors are attractive as recombinant protein expression systems due to the high level of gene expression achieved. The combination of two mutations in the viral replicase, which render the replicase noncytopathic and temperature-sensitive, allowed the generation of a DNA-based vector (CytTs) that shows temperature inducible expression. This vector is of significant value for the production of toxic protein. However, like for other stable expression systems, tedious screening of individual cell clones are required in order to get a high producer cell clone. To circumvent this, we generated an episomally replicating vector by introducing an Epstein-Barr virus mini-replicon unit into CytTs. This novel vector allowed rapid generation of cell populations that showed tight regulation of expression and comparable expression levels to the ones achieved with high producer cell clones with CytTs. Moreover, protein production with selected cell populations could easily be scaled-up to a fermentation process.  相似文献   

10.
Plasmid-borne gene expression systems have found wide application in the emerging fields of systems biology and synthetic biology, where plasmids are used to implement simple network architectures, either to test systems biology hypotheses about issues such as gene expression noise or as a means of exerting artificial control over a cell's dynamics. In both these cases, fluorescent proteins are commonly applied as a means of monitoring the expression of genes in the living cell, and efforts have been made to quantify protein expression levels through fluorescence intensity calibration and by monitoring the partitioning of proteins among the two daughter cells after division; such quantification is important in formulating the predictive models desired in systems and synthetic biology research. A potential pitfall of using plasmid-based gene expression systems is that the high protein levels associated with expression from plasmids can lead to the formation of inclusion bodies, insoluble aggregates of misfolded, nonfunctional proteins that will not generate fluorescence output; proteins caught in these inclusion bodies are thus "dark" to fluorescence-based detection methods. If significant numbers of proteins are incorporated into inclusion bodies rather than becoming biologically active, quantitative results obtained by fluorescent measurements will be skewed; we investigate this phenomenon here. We have created two plasmid constructs with differing average copy numbers, both incorporating an unregulated promoter (P(LtetO-1) in the absence of TetR) expressing the GFP derivative enhanced green fluorescent protein (EGFP), and inserted them into Escherichia coli bacterial cells (a common model organism for work on the dynamics of prokaryotic gene expression). We extracted the inclusion bodies, denatured them, and refolded them to render them active, obtaining a measurement of the average number of EGFP per cell locked into these aggregates; at the same time, we used calibrated fluorescent intensity measurements to determine the average number of active EGFP present per cell. Both measurements were carried out as a function of cellular doubling time, over a range of 45-75 min. We found that the ratio of inclusion body EGFP to active EGFP varied strongly as a function of the cellular growth rate, and that the number of "dark" proteins in the aggregates could in fact be substantial, reaching ratios as high as approximately five proteins locked into inclusion bodies for every active protein (at the fastest growth rate), and dropping to ratios well below 1 (for the slowest growth rate). Our results suggest that efforts to compare computational models to protein numbers derived from fluorescence measurements should take inclusion body loss into account, especially when working with rapidly growing cells.  相似文献   

11.
A process for bacterial expression and purification of the recombinant major wasp allergen Antigen 5 (Ves v 5) was developed to produce protein for diagnostic and therapeutic applications for type 1 allergic diseases. Special attention was focused on medium selection, fermentation conditions, and efficient refolding procedures. A soy based medium was used for fermentation to avoid peptone from animal origin. Animal-derived peptone required the use of isopropyl-beta-D-thiogalactopyranoside (IPTG) for the induction of expression. In the case of soy peptone, a constitutive expression was observed, suggesting the presence of a component that mimics IPTG. Batch cultivation at reduced stirrer speed caused a reduced biomass due to oxygen limitation. However, subsequent purification and processing of inclusion bodies yielded significantly higher amount of product. Furthermore, the protein composition of the inclusion bodies differed. Inclusion bodies were denatured and subjected to diafiltration. Detailed monitoring of diafiltration enabled the determination of the transition point. Final purification was conducted using cation-exchange and size-exclusion chromatography. Purified recombinant Ves v 5 was analyzed by RP-HPLC, CD-spectroscopy, SDS-PAGE, and quantification ELISA. Up to 15 mg highly purified Ves v 5 per litre bioreactor volume were obtained, with endotoxin concentrations less than 20 EU mg(-1) protein and high comparability to the natural counterpart. Analytical results confirm the suitability of the recombinant protein for diagnostic and clinical applications. The results clearly demonstrate that not only biomass, but especially growth conditions play a key role in the production of recombinant Ves v 5. This has an influence on inclusion body formation, which in turn influences the renaturation rate and absolute product yield. This might also be true for other recombinant proteins that accumulate as inclusion bodies in Escherichia coli.  相似文献   

12.
In most cases of E. coli high cell density fermentation process, maximizing cell concentration helps in increasing the volumetric productivity of recombinant proteins usually at the cost of lower specific cellular protein yield. In this report, we describe a process for maintaining the specific cellular yield of Ovine growth hormone (oGH) from E. coli by optimal feeding of yeast extract during high cell density fermentation process. Recombinant oGH was produced as inclusion bodies in Escherichia coli. Specific cellular yield of recombinant oGH was maintained by feeding yeast extract along with glucose during fed-batch fermentation. Glucose to yeast extract ratio of 0.75 was found to be optimum for maintaining the specific cellular oGH yield of 66 mg/g of E. coli cells. Continuous feeding of yeast extract along with glucose helped in reducing acetic acid secretion and promoted higher cell growth during fed-batch fermentation. High cell growth of E. coli and high specific yield of recombinant oGH thus helped in achieving high volumetric productivity of the expressed protein. A maximum of 2 g/l of ovine growth hormone was expressed as inclusion bodies in 12 h of fed-batch fermentation.  相似文献   

13.
During recombinant E. coli fermentation with high-expression levels inclusion bodies are often formed. Aqueous two-phase systems have been successfully used in the presence of urea for the initial recovery step of inclusion bodies from E. coli. Basic studies of the complex interactions are lacking. For a systematic study of protein partitioning in the presence of urea we selected T4-lysozyme mutants with different thermal stability as a model. The stabilization of these variants by phase components was investigated measuring the fluorescence emission of tryptophan residues in the protein. Protein structure was stabilized at pH 7 in the order of S0(4)(2-) > PEG = Dextran > H(2)O. The conformation of proteins was shown to have a strong influence on the partitioning in aqueous two-phase systems. Tryptophan and its homologuous di- and tripeptdides were partitioned in similar phase systems to normalize for contribution from hydrophobic interactions.  相似文献   

14.
Overexpression of the de-ubiquitinating enzyme UCH-L1 leads to inclusion formation in response to proteasome impairment. These inclusions contain components of the ubiquitin-proteasome system and α-synuclein confirming that the ubiquitin-proteasome system plays an important role in protein aggregation. The processes involved are very complex and so we have chosen to take a systems biology approach to examine the system whereby we combine mathematical modelling with experiments in an iterative process. The experiments show that cells are very heterogeneous with respect to inclusion formation and so we use stochastic simulation. The model shows that the variability is partly due to stochastic effects but also depends on protein expression levels of UCH-L1 within cells. The model also indicates that the aggregation process can start even before any proteasome inhibition is present, but that proteasome inhibition greatly accelerates aggregation progression. This leads to less efficient protein degradation and hence more aggregation suggesting that there is a vicious cycle. However, proteasome inhibition may not necessarily be the initiating event. Our combined modelling and experimental approach show that stochastic effects play an important role in the aggregation process and could explain the variability in the age of disease onset. Furthermore, our model provides a valuable tool, as it can be easily modified and extended to incorporate new experimental data, test hypotheses and make testable predictions.  相似文献   

15.
大肠杆菌高效表达重组蛋白策略   总被引:6,自引:0,他引:6  
大肠杆菌表达系统是基因表达技术中发展最早和目前应用最广的经典表达系统。利用该系统表达重组蛋白具有许多优越性,但其表达效率受诸多因素的影响。本文综述国内外利用大肠杆菌表达系统高效表达外源蛋白的策略,主要包括选择合适的启动子、改变信号肽结构、提高mRNA稳定性、提高翻译效率、表达稀有密码子、降低包涵体形成及蛋白降解,利用融合蛋白与分子伴侣、调控发酵条件实现高密度培养等。  相似文献   

16.
Flow cytometry is an established tool in fundamental studies of single-cell microbial physiology. Here we show that it can also provide valuable information for process development. Using recombinant Escherichia coli strains, which express the protein-based polymer (GVGIP)(260)GVGVP, the utility of flow cytometry in monitoring and optimization of fermentations is demonstrated. Single cell right angle light scatter was found to be significantly affected by intracellular product formation possibly due to the formation of inclusion bodies. Translational fusions with green fluorescent protein (GFP) enabled monitoring of product accumulation, as well as plasmid free cell fraction (PFCF). Such fusions also allowed rapid evaluation of induction strategies and three different expression systems based on the T7 promoter, T7-lac promoter and the P(BAD) promoter. The expression system based on the P(BAD) promoter was found to be superior to the T7-based system.  相似文献   

17.
The biotechnological production of recombinant proteins is challenged by processes that decrease the yield, such as protease action, aggregation, or misfolding. Today, the variation of strains and vector systems or the modulation of inducible promoter activities is commonly used to optimize expression systems. Alternatively, aggregation to inclusion bodies may be a desired starting point for protein isolation and refolding. The discovery of the twin-arginine translocation (Tat) system for folded proteins now opens new perspectives because in most cases, the Tat machinery does not allow the passage of unfolded proteins. This feature of the Tat system can be exploited for biotechnological purposes, as expression systems may be developed that ensure a virtually complete folding of a recombinant protein before purification. This review focuses on the characteristics that make recombinant Tat systems attractive for biotechnology and discusses problems and possible solutions for an efficient translocation of folded proteins.  相似文献   

18.
Amongst the various endogenous growth factors, epidermal growth factor (EGF) plays an important role in normal wound healing of tissue such as skin, cornea and gastrointestinal tract. Various studies have proved that supplementing recombinant human EGF (rhEGF) results in significant augmentation of wound healing. In the present work, a high level expression system with poly-arginine sequences was used for the production of recombinant human EGF (rhEGF) as inclusion bodies. The inclusion bodies were solubilized and the protein was refolded by using expanded-bed adsorption chromatography. The renatured protein was digested with appropriate concentration of trypsin and subsequently the digested rhEGF is purified by passing through ion-exchange chromatography (Toyopearl-SP) to obtain a biologically active protein. This process is the shortest process with reduced number of steps of purification, eliminates the usage of preparative reversed phase HPLC (RP-HPLC) for final purification, which is an expensive technique. The purified protein was analyzed by RP-HPLC, showing a purity >99% and size exclusion chromatography profile shows that there are minimal aggregates, with 99% renatured active protein. The purified rhEGF showed a specific activity of 5 × 105 IU/mg protein, in comparison with NIBSC standard (1st International Standard of rDNA-derived EGF, Code 91/530). The process has been successfully adopted at 100 L fermentation scale and the rhEGF based formulation has been commercialized with brand name REGEN D, with excellent clinical results.  相似文献   

19.
Nitrile hydratases are important industrial catalysts to produce valuable amides. In this study, we describe a comprehensive and systematic approach to the development of an inducible expression system for enhanced nitrile hydratase expression in Corynebacterium glutamicum. Through promoter engineering, codon optimization and design of ribosome binding site sequences, the nitrile hydratase activity toward 3-cyanopyridine was improved from 0.33 U/mg DCW to 12.03 U/mg DCW in shake-flask culture. By introduction of the novel inducible mmp expression system, the nitrile hydratase activity was further elevated to 14.97 U/mg DCW. Finally, a high nitrile hydratase yield of 1432 U/mL was achieved in a fed-batch fermentation process and used for nicotinamide production. These results provide new insights for the development of heterologous protein expression systems in C. glutamicum.  相似文献   

20.
Inducible expression systems can be applied to control the expression of proteins or biochemical pathways in cell factories. However, several of the established systems require the addition of expensive inducers, making them unfeasible for large-scale production. Here, we establish a genome integrated trp-T7 expression system where tryptophan can be used to control the induction of a gene or a metabolic pathway. We show that the initiation of gene expression from low- and high-copy vectors can be tuned by varying the initial concentration of tryptophan or yeast extract, and that expression is tightly regulated and homogenous when compared with the commonly used lac-T7 system. Finally, we apply the trp-T7 expression system for the production of l -serine, where we reach titers of 26 g/L in fed-batch fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号