首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

2.
The specific binding of [3H]imipramine to mouse brain membranes in an assay containing 120 mM NaCl and 5 mM KCl was similar in regional distribution and pharmacological specificity to that reported previously in rat and human brain. However, the absence of ions decreased the density of the specific binding of [3H]imipramine and did not affect the equilibrium dissociation constant. Sodium was the only cation, and halides were the only anions tested that enhanced the specific binding of [3H]imipramine. Chloride did not increase the density of binding in the absence of sodium. The ion-sensitive binding of [3H]imipramine was regionally dependent and was highly correlated with the uptake of 5-hydroxytryptamine (5-HT, serotonin) into synaptosomes from brain regions. 5-HT did not inhibit the binding of [3H]imipramine in the absence of ions. Antidepressants inhibited binding in the absence and presence of ions, but in the presence of ions inhibition curves were shifted to the left and the apparent complexity of inhibition was increased. Quantitative analysis of the inhibition of [3H]imipramine binding by antidepressants conducted in the presence of ions was consistent with two binding sites. Lesion of the serotonergic input to the cerebral cortex by 5,7-dihydroxytryptamine suggested that both the 5-HT-sensitive and ion-sensitive binding of [3H]imipramine were associated with serotonergic nerve terminals. [3H]Imipramine binding displaced by desipramine, but insensitive to 5-HT and ions, was not affected by the lesion. Thus, the binding of [3H]imipramine that is displaced by desipramine, the most common assay for [3H]imipramine binding, includes a component that is not associated with brain serotonergic nerve terminals and 5-HT uptake, and, in addition, a separable component that is highly correlated with serotonergic function. These data have important implications for studies of serotonergic neurons and for the interpretation of imipramine binding data.  相似文献   

3.
The neonatal administration of 5,7-dihydroxytryptamine to rats (100 mg kg?1 s.c. on the 1st and 2nd day after birth) resulted in marked reductions in serotoninergic presynaptic markers ([3H]-5-HT synaptosomal uptake, tryptophan hydroxylase activity and endogenous 5-HT content) in various forebrain areas, particularly the cerebral cortex and the hippocampus. In contrast, this treatment produced an increased outgrowth of serotoninergic terminals in the brain stem as judged by the significant increments of these presynaptic markers in this region. Both in the hippocampus and the brain stem, these 5,7-dihydroxytryptamine-induced changes in serotoninergic innervation were associated with a transient increase in 5-HT-sensitive adenylate cyclase activity. No significant alteration of the specific high affinity binding of [3H]-5-HT to synaptosomal membranes from various brain regions was detected in 5,7-dihydroxytryptamine-treated rats for at least the first postnatal month.The chronic blockade of 5-HT receptors by metergoline (5 mg kg?1 day?1 from day 3 to day 22 after birth) altered neither the changes in presynaptic markers nor the evolution of [3H]-5-HT high affinity binding in 5,7-dihydroxytryptamine-treated rats.These findings further illustrate that the high affinity binding sites for [3H]-5-HT do not correspond to postsynaptic 5-HT receptors coupled to adenylate cyclase in the rat brain. Apparently, 5-HT receptors play no role in the increased outgrowth of serotoninergic systems in the brain stem following neonatal 5,7-dihydroxy-tryptamine treatment.  相似文献   

4.
The modulation of cortical dopaminergic and serotonergic neurotransmissions by neurotensin (NT) was studied by measuring the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) from the prefrontal cortex (PFC) of freely moving rats. The samples were collected via transversal microdialysis. Dopamine and 5-HT levels in the dialysate were measured using high-performance liquid chromatography (HPLC) with an electrochemical detector. Local administration of neurotensin (1 μM or 0.1 μM) in the PFC via the dialysis probe produced significant, long-lasting, and concentration-dependent increase in the extracellular release of DA and 5-HT. The increase produced by 1 μM neurotensin reached a maximum of about 210% for DA and 340% for 5-HT. A high-affinity selective neurotensin receptor (NTR1) antagonist {2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3yl)carbonylamino tricyclo (3.3.1.1.3.7) decan-2-carboxylic acid} (SR 48692), perfused locally at a concentration of 0.1 μM and 0.5 μM in the PFC antagonized the effects of 1 μM neurotensin. Our in vivo neurochemical results indicate, for the first time, that neurotensin is able to regulate cortical dopaminergic and serotonergic neuronal activity in freely moving rats. These effects are possibly mediated by interactions of neurotensin with neurons releasing DA or 5-HT, projecting to the PFC from the ventrotegmental area (VTA) and from the dorsal raphe nuclei (DRN), respectively. The potentiating effects of neurotensin on DA and 5-HT release in the PFC are regulated by NTR1 receptors, probably located on dopaminergic and serotonergic nerve terminals or axons.  相似文献   

5.
Neuropeptide S (NPS) is a neurotransmitter/neuromodulator that has been identified as the natural ligand of G protein-coupled receptors termed NPS receptors (NPSRs). The NPS-NPSR system is involved in the control of numerous centrally-mediated behaviours, including anxiety. As several classical transmitters play a role in fear/anxiety, we here investigated the regulation by NPS of the exocytotic release of 5-hydroxytryptamine (5-HT) and glycine in nerve terminals isolated from mouse frontal/prefrontal cortex and amygdala. Synaptosomes, prelabelled with the tritiated neurotransmitters, were depolarized in superfusion with 12–15 mM KCl and exposed to varying concentrations of NPS. The evoked release of [3H]5-HT in frontal/prefrontal cortex was potently inhibited by NPS (maximal effect about 25% at 0.1 nM). Differently, the neuropeptide exhibited higher efficacy but much lower potency in amygdala (maximal effect about 40% at 1 μM). NPS was an extremely potent inhibitor of the K+-evoked release of [3H]glycine in frontal/prefrontal nerve endings (maximal effect about 25% at 1 pM). All the inhibitory effects observed were counteracted by the NPSR antagonist SHA 68, indicating that the neuropeptide acted at NPSRs. In conclusion, NPS can inhibit the exocytosis of 5-HT and of glycine through the activation of presynaptic NPSRs situated on serotonergic and glycinergic terminals in areas involved in fear/anxiety behaviours. The possibility exists that the NPSRs in frontal/prefrontal cortex are high-affinity receptors involved in non-synaptic transmission, whereas the NPSRs on amygdala serotonergic terminals are low-affinity receptors involved in axo-axonic synaptic communication.  相似文献   

6.
Summary The occurrence and distribution of supra-ependymal nerve terminals storing serotonin (5-HT) are described for the fourth ventricle of the rat brain. The nerve terminals were identified as monoaminergic 1) fluorescence-histochemically, by the presence of a varicose, formaldehyde-induced fluorescence (FIF) on the free surface of the ependyma, 2) electron microscopically, by the presence of electron dense (chromaffin) cores in small (50 nm) and large (100 nm) vesicles found within the varicose regions of supra-ependymal nerve fibres, and 3) by the absence of both the FIF and chromaffin dense cores after treatment with reserpine. Moreover, the serotonergic nature of these nerve fibres could be concluded from 1) the yellow colour of the FIF, 2) the increased FIF after treatment with nialamide or reserpine+nialamide, 3) the diminished FIF and absence of chromaffin dense cores after treatment with p-CPA, and finally 4) the persistence of the FIF and chromaffin dense cores after treatment with -MPT.A high density of 5-HT nerve terminals occurred throughout the floor of the fourth ventricle and on the floor and roof of the lateral recess. Few 5-HT nerve terminals occurred only on the roof of the fourth ventricle (velum medullare, lamina epithelialis of the tela chorioidea), and the surface of the choroid plexus epithelia was devoid of such nerves. Virtually all nerve terminals in the fourth ventricle appear to be serotonergic.Results presented in part at the Autumn Meeting of the British and Italian Pharmacological Societies, Bristol, 1974 (Lorez et al., 1974). The skilful assistance of Mr. R. Wybrecht, Mr. R. Reese and Mrs. M. Gschwind is gratefully acknowledged.  相似文献   

7.
The degree of occupancy of the serotonin transporter (SERT) by selective serotonin reuptake inhibitors (SSRIs) appears to be critical in determining therapeutic response. To gain insight into the extent of occupancy required to alter serotonergic neurotransmission we used high-speed chronoamperometry to determine the extent of serotonergic destruction required to reduce the clearance of exogenously administered serotonin from extracellular fluid in the CA3 region of the hippocampus. Rats were pretreated with various doses of 5,7-dihydroxytryptamine to produce either a low, intermediate or high loss of SERTs. Clearance of 5-HT was reduced only in rats with > 90% loss of SERT. In these rats, there was also a trend for peak signal amplitudes to be greater. There was no significant difference in these parameters between the sham group and those with low or intermediate loss of SERTs. The SSRI, fluvoxamine, prolonged clearance of 5-HT in sham, low and intermediate groups, whereas there was no effect of fluvoxamine in those rats with > 90% loss of SERT. Functional loss of SERT activity occurs when destruction of serotonergic innervation is greater than 90% but serotonin clearance and efficacy of fluvoxamine is maintained with as few as one fifth of a full complement of SERTs.  相似文献   

8.
Abstract: Fenfluramine is the most widely used anorexigenic drug in humans. In animal experiments d -fenfluramine has been shown to act as a potent releaser of brain serotonin [5-hydroxytryptamine (5-HT)]. Here we have investigated the effects of d -fenfluramine on the release of [3H]5-HT from isolated nerve endings of human neocortex. The drug elicited release of unmetabolized [3H]5-HT, and this effect was concentration dependent. However, the mechanism of release seems to differ profoundly depending on the concentrations of d -fenfluramine used. At 5 µ M , the release of [3H]5-HT was blocked by the 5-HT transporter inhibitor fluoxetine and was Ca2+ independent and insensitive to the human autoreceptor 5-HT1D agonist sumatriptan. The release of [3H]5-HT elicited by 0.5 µ M d -fenfluramine was similarly blocked by fluoxetine, but it was strongly Ca2+ dependent and sensitive to sumatriptan. It is suggested that, at relatively high concentrations, d -fenfluramine largely diffuses into serotonergic terminals and causes release of 5-HT through the 5-HT carrier working in the inside-outside direction; at relatively low concentrations d -fenfluramine enters the terminals through the 5-HT transporter but elicits release of 5-HT by an exocytotic-like mechanism.  相似文献   

9.
The effect of a long-term administration of the antidepressant milnacipran on the function of the serotonergic (5-HT) and noradrenergic (NE) systems was studied using single cell recording of CA3 hippocampal pyramidal cells in chloral hydrate-anesthetized male Sprague-Dawley rats, and in vitro [3H]5-HT release measurement from hippocampal slices. The sensitivity of neither the extrasynaptic nor that of the postsynaptic 5-HT1A receptors of the pyramidal neurons was altered, as indicated by their unchanged responsiveness to the microiontophoretic application of 5-HT, and by the unchanged effect of the electrical stimulation at low frequency of the ascending 5-HT bundle, respectively. Increasing the frequency of stimulation (from 1 to 5 Hz) decreased its efficacy in control rats; the milnacipran treatment abolished this phenomenon. This cannot be attributed to a desensitisation of the terminal 5-HT1B autoreceptor, since the suppressive effect of 5-HT agonist 5-carboxyamidotryptamine on [3H]5-HT release was enhanced in milnacipran-treated rats. As for the NE system, the unchanged suppressing effect of microiontophoretic applications of NE and that of the 5 Hz stimulation in the locus coeruleus (LC) on the firing activity of pyramidal neurons indicates that the milnacipran treatment not altered the sensitivity of extrasynaptic alpha2- and postsynaptic alpha1-adrenergic receptors on pyramidal cells, as well as that of the presynaptic alpha2-autoreceptor on NE terminals. The decreased inhibitory effect of NE on the [3H]5-HT release in milnacipran-treated rats revealed that this treatment results in a desensitisation of the presynaptic alpha2-heteroreceptor located on serotonergic terminals. Taken together with the decreased suppressive effect of a low frequency of stimulation of the NE tract, the present results suggest that long-term milnacipran treatment enhances the efficacy of the 5-HT and reduces that of the NE neurotransmission.  相似文献   

10.
The ability of serotonin (5-HT) to influence striatal glutamatergic transmission was examined by determining changes over time in glutamate extracellular levels, transporter expression and synaptosomal uptake in rats with lesion of serotonergic neurones. By 8 days after intraraphe injections of 5,7-dihydroxytryptamine, producing 80% decreases in striatal tissue 5-HT levels, no changes were observed in the glutamatergic transmission. When 5-HT depletion was almost complete (21 days post-lesion), high affinity glutamate uptake in striatal synaptosomal preparations was significantly increased (156% of control), although no changes in striatal GLT1, GLAST and EAAC1 mRNAs, and GLT1 protein were detected by in situ hybridization and immunohistochemistry. Meanwhile, the serotonin lesion produced large increases in basal extracellular levels of glutamate and glutamine (364% and 259%, respectively) determined in awake rats by in vivo microdialysis, whereas no change was observed in dopamine levels as compared with control rats. High potassium depolarization as well as L-trans-pyrrolidine-2,4-dicarboxylate, also induced larger increases in extracellular levels of glutamate in lesioned rats than in controls. Finally, similar changes in glutamate transmission were observed by 3 months post-lesion. These results suggest that 5-HT has a long lasting and tonic inhibitory influence on the striatal glutamatergic input, without affecting the basal dopaminergic transmission.  相似文献   

11.
Previous studies have implicated a role for nitric oxide (NO) and peroxynitrite in methamphetamine-induced dopaminergic neurotoxicity. The present study was undertaken to investigate whether NO is involved in serotonergic neurotoxicity caused by fenfluramine. In the first experiment, the effect of the neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI; 25 mg/kg x 4) on fenfluramine (25 mg/kg x 4)-induced serotonergic neurotoxicity in Swiss Webster mice was investigated. In the second experiment, the effect of fenfluramine (25 mg/kg x 4) on nNOS (-/-) and wild-type (WT) mice was investigated. Fenfluramine induced hypothermia in all three mouse strains, and 7-NI had no thermoregulatory effect. Selective depletion of 5-HT and 5-HT transporter binding sites in the striatum, frontal cortex and hippocampus in all three mouse strains was observed, with no evidence of dopaminergic neurotoxicity. In the first experiment, 7-NI did not attenuate serotonergic neurotoxicity in Swiss Webster mice. In the second experiment, nNOS(-/-) and WT mice were equally sensitive to serotonergic neurotoxicity. These findings suggest that NO and peroxynitrite do not mediate fenfluramine-induced serotonergic neurotoxicity, and that NO is a selective mediator of amphetamines-induced dopaminergic neurotoxicity.  相似文献   

12.
The effects of chronic (14 day) administration of the tricyclic antidepressant imipramine, the serotonin-2 (5-HT2) antagonist ketanserin, and the serotonin agonist quipazine on 5-HT2 receptor binding parameters and 5-HT2-mediated behavior were examined in rats with or without prior serotonergic denervation [via 5,7-dihydroxytryptamine (5,7-DHT)] or noradrenergic denervation [via N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)]. Chronic administration of imipramine, ketanserin, or quipazine produced a marked reduction in the number of 5-HT2 binding sites which was accompanied by reductions in the 5-HT2-mediated quipazine-induced head shake response. In animals receiving DSP4 or 5,7-DHT lesions and continuous vehicle treatment, beta-adrenergic receptor binding sites were significantly up-regulated while 5-HT2 receptor binding sites did not change. Imipramine normalized the lesion-induced increases in beta-adrenergic binding observed in DSP4 and 5,7-DHT-lesioned rats but failed to down-regulate beta-adrenergic binding sites below non-lesioned control levels. Chronic imipramine, ketanserin, and quipazine reduced quipazine-induced head shakes and down-regulated 5-HT2 binding sites in rats with noradrenergic denervation. While imipramine, ketanserin, and quipazine all down-regulated 5-HT2 binding sites in animals with serotonergic denervation, only imipramine's ability to reduce quipazine-induced head shakes was attenuated in 5,7-DHT-lesioned rats. The present results suggest that imipramine-induced down-regulation of 5-HT2 receptors may not involve presynaptic 5-HT mechanisms, and imipramine-induced alterations in 5-HT2 sensitivity as reflected in the quipazine-induced head shake may, in part, be influenced by beta-adrenergic receptors.  相似文献   

13.
The effect of continuous treatment with the selective 5-HT1A agonist gepirone upon 5-HT2-mediated behavior and cortical 5-HT2 receptor binding sites was examined in naive rats or rats receiving noradrenergic (DSP4) or serotonergic (5,7-DHT) lesions. Continuous administration of gepirone in non-lesioned rats for 3, 7, or 14 days enhanced the head shake response to the 5-HT agonist quipazine. This enhancement of 5-HT2-mediated behavior occurred despite concomitant down-regulation of cortical 5-HT2 binding sites. However, 28 days of gepirone administration significantly reduced behavioral responsiveness to quipazine. The gepirone-induced facilitation of 5-HT2-mediated behavior observed after 7 days of continuous treatment was blocked in both DSP4 and 5,7-DHT-lesioned rats. However, both noradrenergic and serotonergic denervation failed to modify the down-regulation of 5-HT2 receptor binding sites produced by continuous gepirone administration. These results suggest that the curious dissociation of behavioral and biochemical indices of 5-HT2 receptor function produced by continuous gepirone treatment may be the result of a dual yet separate action of the drug on central presynaptic noradrenergic and serotonergic mechanisms and postsynaptic 5-HT receptors. Furthermore, the postsynaptic action of gepirone which reduces the maximal number of cortical 5-HT2 receptor binding sites may be the result of gepirone's agonist action at postsynaptic 5-HT1A receptors.  相似文献   

14.
Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 5,7-dihydroxytryptamine (5,7-DHT) on striatal levels of dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites, as well as on locomotor activity were investigated in C57BL/6 mice. The results showed that MPTP significantly increased locomotor activity and decreased striatal DA levels. However, injection of the serotonergic neurotoxin 5,7-DHT in the striatum, either alone or following high doses of MPTP, significantly decreased locomotor activity, and concomitantly decreased striatal levels of 5-HT and 5-HIAA. This study suggests that the increased locomotor activity may be due to increased striatal serotonergic activity which overcompensates for the DA deficiency. The locomotor hypoactivity, induced by 5,7-DHT, might be due to the decreased striatal levels of 5-HT and 5-HIAA.  相似文献   

15.
Summary

The possibility that biogenic amines affect ovarian development in the red swamp crayfish, Procambarus clarkii, was investigated. Females were administered 15 μg/g body weight (bw) of norepinephrine, dopamine, 5-hydroxytryptamine (5-HT) or octopamine on days 1, 5 and 10 and were sacrificed on day 15. Crayfish given 5-HT showed significant increases in ovarian index (30.5%) and oocyte size (34.0%) over the concurrent controls, while norepinephrine, dopamine and octopamine did not significantly affect either the ovarian index or oocyte size. Significantly more labeling by 14C-leucine of ovarian proteins was found in ovaries of crayfish that were injected with 5-HT in vivo, but when ovarian lobes from crayfish that had not been injected with 5-HT were incubated in vitro with 5-HT added to the incubation medium, no significant change in the level of incorporation of 14C-leucine into ovarian proteins occurred.

The 5-HT receptor blocker LY53857 (25 μg/g bw) retarded ovarian development. The 5-HT releaser fenfluramine and the 5-HT potentiator fluoxetine (both 15 μg/g bw) were also used. Crayfish given fenfluramine, fluoxetine, fenfluramine plus 5-HT or fluoxetine plus 5-HT showed significant increases of ovarian index (24.0–102.8%), oocyte size (20.0–87.4%) and in vitro 14C-leucine labeling of ovarian proteins (30.6–123.6%) over the concurrent controls. The ovaries of crayfish that received the 5-hydroxytryptaminergic neurotoxin 5,6-dihydroxytryptamme (10 μg/g bw) did not show any significant change as compared with the initial control. These findings are consistent with the hypothesis that 5-HT, which is present in the central nervous system of Procambarus clarkii, exerts its stimulatory effect on the ovary of this crayfish indirectly by triggering release of the ovary-stimulating hormone.  相似文献   

16.
《Life sciences》1995,57(24):PL373-PL380
Nefazodone HCl (Serzone®) is a new antidepressant with a chemical structure unrelated to selective serotonin reuptake inhibitors (SSRIs), tricyclics, tetracyclics, or monoamine oxidase inhibitors (MAOIs). Nefazodone is active in a number of preclinical tests for antidepressant activity and shows clinical efficacy in the treatment of depression with a more favorable side-effect profile than the structurally similar antidepressant trazodone. Previous studies have shown that nefazodone is a potent antagonist of 5-HT2A receptors and binds to the serotonin transporter in vitro and in vivo. Nefazodone also binds to the norepinephrine transporter in vitro and in acute ex vivo studies. To further investigate the ability of nefazodone to modify serotonergic transmission, the ability of systemically administered nefazodone to inhibit the serotonin transporter was assessed by investigating the ability of nefazodone to prevent p-chloroamphetamine- (PCA) induced depletions of cortical 5-HT concentrations. In addition, the ability of acute and subchronic nefazodone administration to inhibit ex vivo [3H]-5-HT uptake was assessed. Acute administration of nefazodone (30, 100, and 150 mg/kg) antagonized PCA-induced depletion of cortical 5-HT concentrations in a dose-dependent manner at 1,2, and 3 hours post-treatment. This effect was directly correlated with serum nefazodone concentrations. Both 100 mg/kg and 150 mg/kg of nefazodone were equipotent with fluoxetine (10 mg/kg) over the course of the experiment with respect to sparing of 5-HT depletion. Acute administration of nefazodone (100 and 150 mg/kg s.c.) significantly increased the Km, for [3H]-5-HT uptake in rat cortical synaptosomes from 60 nmol/L in controls to 230 and 242 nmol/L in nefazodone-treated rats, respectively. Subchronic administration of nefazodone (100 and 150 mg/kg, s.c., b.i.d. × 5.5 days) reduced [3H]-5-HT uptake by 24% and 29%, respectively. Sub-chronic dosing with fluoxetine (5 mg/kg, s.c., b.i.d. × 5.5 days) reduced [3H]-5-HT uptake by 65% These experiments confirm and extend previous reports concerning the ability of nefazodone to inhibit the 5-HT transporter in vivo.  相似文献   

17.
The present study was undertaken to determine cerebrospinal fluid (CSF) and brain levels of norepinephrine (NE), serotonin (5-HT) and their metabolites--3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA)--in rats pretreated with 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT). In the 6-OHDA pretreated rats, both CSF and brain concentrations of NE, DOPAC and HVA sustained significant decreases as compared with those in non-treated rats. Positive and significant correlations between CSF and brain levels were observed in respect to NE, DOPAC and HVA. In 5,7-DHT pretreated rats, both CSF and brain concentrations of 5-HT and 5-HIAA were significantly decreased. A positive and significant correlation between CSF and brain levels in respect to 5-HT and 5-HIAA was observed. Further studies were carried out to determine ACh levels of both the CSF and the brain in microspheres (MS)-treated rats, which are used as a model of microembolization. The CSF ACh concentrations in MS-treated groups were significantly decreased as compared with those in non-treated rats. The brain ACh contents also tended to decrease in this group. A positive and significant correlation was observed between CSF and brain levels of ACh. These findings suggest that NE, 5-HT and ACh concentrations in the CSF are direct indications of central noradrenergic, serotonergic and cholinergic nerve activity, respectively.  相似文献   

18.
J L Waddington  T J Crow 《Life sciences》1979,25(15):1307-1314
Rats with unilateral 5,7-DHT lesions, but not 5,6-DHT lesions, showed rotational responses to 5-HTergic drugs (5MeODMT and fenfluramine) that were qualitatively similar to those induced by DAergic drugs (apomorphine and amphetamine) after 6-OHDA lesions. However, 5,7-DHT-lesioned rats also themselves showed rotational responses to DAergic drugs. The merits and limitations of a unilateral 5,7-DHT-lesioned rotating rat model for studying 5-HTergic function are discussed. It is suggested that 5-HT and DA may function in a co-operative manner in the striatum. These findings may be important for the rational pharmacotherapy of Parkinson's disease in which 5-HT as well as DA has been shown to be substantially depleted.  相似文献   

19.
The modulation of cortical dopaminergic and serotonergic neurotransmissions by neurotensin (NT) was studied by measuring the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) from the prefrontal cortex (PFC) of freely moving rats. The samples were collected via transversal microdialysis. Dopamine and 5-HT levels in the dialysate were measured using high-performance liquid chromatography (HPLC) with an electrochemical detector. Local administration of neurotensin (1microM or 0.1microM) in the PFC via the dialysis probe produced significant, long-lasting, and concentration-dependent increase in the extracellular release of DA and 5-HT. The increase produced by 1microM neurotensin reached a maximum of about 210% for DA and 340% for 5-HT. A high-affinity selective neurotensin receptor (NTR1) antagonist {2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3yl)carbonylamino tricyclo (3.3.1.1.(3.7)) decan-2-carboxylic acid} (SR 48692), perfused locally at a concentration of 0.1microM and 0.5microM in the PFC antagonized the effects of 1microM neurotensin. Our in vivo neurochemical results indicate, for the first time, that neurotensin is able to regulate cortical dopaminergic and serotonergic neuronal activity in freely moving rats. These effects are possibly mediated by interactions of neurotensin with neurons releasing DA or 5-HT, projecting to the PFC from the ventrotegmental area (VTA) and from the dorsal raphe nuclei (DRN), respectively. The potentiating effects of neurotensin on DA and 5-HT release in the PFC are regulated by NTR1 receptors, probably located on dopaminergic and serotonergic nerve terminals or axons.  相似文献   

20.
Immunocytochemical and autoradiographic techniques were employed to determine the time course of expression of the serotonin (5-HT) transporter (SERT) on thalamocortical afferents in the rat's primary somatosensory cortex (S-I), and to correlate this expression to the transient vibrissae-related patterning of 5-HT immunostaining previously described. In additional in vivo and in vitro experiments, 5-HT and 3 H-5-HT were applied directly to the cortices of untreated and 5,7-dihydroxytryptamine-treated (5,7-DHT) rats in order to determine the period during which SERT functions on thalamocortical axons to take up 5-HT. In postnatal rats, SERT immunohistochemistry revealed a somatotopic patterning in S-I that persisted until P-15, which is 6 days after the disappearance of the vibrissae-related 5-HT immunostaining. 3 H-citalopram autoradiography revealed a vibrissae-related pattern in layer IV of S-I until at least P-30. Following destruction of raphe-cortical afferents with 5,7-DHT on the day of birth, this binding pattern remained visible until at least P-25, indicating that SERT located on thalamocortical axons is responsible for the 3 H-citalopram patterning observed in S-I. Tissue from 5,7-DHT-treated rats that had 5-HT applied directly to their cortices revealed a normal vibrissae-related pattern of 5-HT immunostaining in S-I at P-7 and P-11 but only a faint pattern at P-13 and none at P-14. In addition, 3 H-5-HT injected directly into S-I labeled layer IV barrels at P-6 and P-12 but not at P-18. The results of these experiments demonstrate that SERT is expressed by thalamocortical afferents and remains functional long after the vibrissae-related 5-HT immunostaining in cortex disappears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号