首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Sympathetic denervation of the iris muscle produces increases in both the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) and in muscle contraction in response to norepinephrine (NE). To shed more light on the biochemical basis underlying this supersensitivity we investigated: the effects of NE on PIP2 breakdown, measured as myo-inositol trisphosphate (IP3) accumulation, and on muscle contraction in normal and denervated rabbit iris dilator; and the effects of denervation on selected biochemical properties of this muscle. The data obtained from these studies can be summarized as follows: The EC50 values (microM) for NE-induced IP3 accumulation in normal and denervated dilators were 14 and 3, respectively. This accumulation of IP3 was blocked by prazosin (1 microM). The EC50 values (microM) for NE-induced contraction for the normal and denervated muscles were 10 and 0.6, respectively. The NE-induced muscle contraction was blocked by prazosin (1 microM). The t1/2 values (s) for IP3 accumulation in normal and denervated muscles were 31 and 11, respectively, and for contraction the values were 19 and 9, respectively. Denervation increased significantly (15-18%) the basal labelling of phosphoinositides from myo-[3H]inositol, but not from 32P or [14C]arachidonic acid. Denervation had little effect on the activities of the enzymes involved in phosphoinositide metabolism. However, the activities of protein kinase C and Ca2+-ATPase increased in the denervated muscle. It is concluded that sympathetic denervation of the iris dilator renders the coupling between alpha1 receptors and PIP2 breakdown into IP3 and 1,2-diacylglycerol (DG) more efficient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号