首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Emerging tick-borne diseases of humans and animals have occurred frequently during the past 30 years. These disease outbreaks appear to result from changes in the distribution of tick and vertebrate hosts, and the introduction of humans and domestic animals into tick–pathogen–wildlife cycles. Use of molecular technologies now available for identification of pathogens in ticks can provide valuable information that allows for risk analysis of emerging tick-borne diseases. In this study, the prevalence of selected pathogens in ticks collected in six locations in central Spain from the major wild ungulate species, European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus), was determined by PCR. Tick species collected included Ixodes ricinus, Dermacentor marginatus, Rhipicephalus bursa and Hyalomma m. marginatum. Pathogens identified in ticks included piroplasmids, Anaplasma spp., Ehrlichia spp. and Rickettsia spp. Piroplasmids were identified in all tick species except I. ricinus. Ehrlichia spp. were detected in all tick species and collection locations, while Rickettsia spp., which proved to be R. slovaca and a recently identified Rickettsia sp. DnS28, were identified only in D. marginatus. A. marginale and A. phagocytophilum were detected in D. marginatus, R. bursa and Hy. m. marginatum. Concurrent infections of these pathogens were frequently observed in ticks. Notably, A. phagocytophilum, which is infective for a broad host range that includes humans and domestic and wild animals, was identified in ticks from all collection locations. The variety of ticks and tick-borne pathogens demonstrated in this study suggests a risk in central Spain for the emergence of tick-borne diseases in humans and domestic animals.  相似文献   

2.
Deer serve as reservoirs of tick-borne pathogens that impact on medical and veterinary health worldwide. In the Republic of Korea, the population of Korean water deer (KWD, Hydropotes inermis argyropus) has greatly increased from 1982 to 2011, in part, as a result of reforestation programs established following the Korean War when much of the land was barren of trees. Eighty seven Haemaphysalis flava, 228 Haemaphysalis longicornis, 8 Ixodes nipponensis, and 40 Ixodes persulcatus (21 larvae, 114 nymphs, and 228 adults) were collected from 27 out of 70 KWD. A total of 89/363 ticks (266 pools, 24.5% minimum infection rate) and 5 (1.4%) fed ticks were positive for Anaplasma phagocytophilum using nested PCR targeting the 16S rRNA and groEL genes, respectively. The 16S rRNA gene fragment sequences of 88/89 (98.9%) of positive samples for A. phagocytophilum corresponded to previously described gene sequences from KWD spleen tissues. The 16S rRNA gene fragment sequences of 20/363 (5.5%) of the ticks were positive for A. bovis and were identical to previously reported sequences. Using the ITS specific nested PCR, 11/363 (3.0%) of the ticks were positive for Bartonella spp. This is the first report of Anaplasma and Bartonella spp. detected in ticks collected from KWD, suggesting that ticks are vectors of Anaplasma and Bartonella spp. between reservoir hosts in natural surroundings.  相似文献   

3.
Wild deer are one of the important natural reservoir hosts of several species of Ehrlichia and Anaplasma that cause human ehrlichiosis or anaplasmosis in the United States and Europe. The primary aim of the present study was to determine whether and what species of Ehrlichia and Anaplasma naturally infect deer in Japan. Blood samples obtained from wild deer on two major Japanese islands, Hokkaido and Honshu, were tested for the presence of Ehrlichia and Anaplasma by PCR assays and sequencing of the 16S rRNA genes, major outer membrane protein p44 genes, and groESL. DNA representing four species and two genera of Ehrlichia and Anaplasma was identified in 33 of 126 wild deer (26%). DNA sequence analysis revealed novel strains of Anaplasma phagocytophilum, a novel Ehrlichia sp., Anaplasma centrale, and Anaplasma bovis in the blood samples from deer. None of these have been found previously in deer. The new Ehrlichia sp., A. bovis, and A. centrale were also detected in Hemaphysalis longicornis ticks from Honshu Island. These results suggest that enzootic cycles of Ehrlichia and Anaplasma species distinct from those found in the United States or Europe have been established in wild deer and ticks in Japan.  相似文献   

4.
Outbreaks of tick-borne disease cases in Santa Catarina, Brazil are known, but the presence of the pathogen DNA has never been determined. In this study, the first survey of Anaplasma marginale, Babesia bigemina, and Babesia bovis DNA on blood samples of 33 cattle from an outbreak in Ponte Alta Municipality, Santa Catarina, Brazil, has been carried out. A multiplex PCR detected 54.5% of animals were co-infected with 2 or 3 parasites, while 24.2% were infected with only 1 species. The most prevalent agent was B. bigemina (63.6%) followed by A. marginale (60.6%). This is the first report of tick-borne disease pathogens obtained by DNA analysis in Southern Brazil.  相似文献   

5.
The Lone Star tick, Amblyomma americanum, transmits several bacterial pathogens including species of Anaplasma and Ehrlichia. Amblyomma americanum also hosts a number of non-pathogenic bacterial endosymbionts. Recent studies of other arthropod and insect vectors have documented that commensal microflora can influence transmission of vector-borne pathogens; however, little is known about tick microbiomes and their possible influence on tick-borne diseases. Our objective was to compare bacterial communities associated with A. americanum, comparing Anaplasma/Ehrlichia -infected and uninfected ticks. Field-collected questing specimens (n = 50) were used in the analyses, of which 17 were identified as Anaplasma/Ehrlichia infected based on PCR amplification and sequencing of groEL genes. Bacterial communities from each specimen were characterized using Illumina sequencing of 16S rRNA gene amplicon libraries. There was a broad range in diversity between samples, with inverse Simpson’s Diversity indices ranging from 1.28–89.5. There were no statistical differences in the overall microbial community structure between PCR diagnosed Anaplasma/Ehrlichia-positive and negative ticks, but there were differences based on collection method (P < 0.05), collection site (P < 0.05), and sex (P < 0.1) suggesting that environmental factors may structure A. americanum microbiomes. Interestingly, there was not always agreement between Illumina sequencing and PCR diagnostics: Ehrlichia was identified in 16S rRNA gene libraries from three PCR-negative specimens; conversely, Ehrlichia was not found in libraries of six PCR-positive ticks. Illumina sequencing also helped identify co-infections, for example, one specimen had both Ehrlichia and Anaplasma. Other taxa of interest in these specimens included Coxiella, Borrelia, and Rickettsia. Identification of bacterial community differences between specimens of a single tick species from a single geographical site indicates that intra-species differences in microbiomes were not due solely to pathogen presence/absence, but may be also driven by vector life history factors, including environment, life stage, population structure, and host choice.  相似文献   

6.
This study was carried out to identify the tick species that infest grazing cattle and to determine the presence of tick-borne pathogens transmitted by these ticks in Korea. A total of 903 ticks (categorized into 566 tick pools) were collected from five provinces during 2010–2011. The most prevalent tick species was Haemaphysalis longicornis, followed by three Ixodes spp. ticks. The collected ticks were infected with both rickettsial and protozoan pathogens. In all, 469 (82.9%) tick pools tested positive for the Anaplasma/Ehrlichia 16S rRNA gene, whereas 67 (11.8%) were positive for the Babesia/Theileria 18S rRNA gene. Among the rickettsial pathogens, E. canis was detected with the highest rate (22.3%), followed by A. platys (20%), E. chaffeensis (19.4%), E. ewingii (19.3%), Rickettsia sp. (12.4%), A. phagocytophilum (5.5%) and E. muris (0.5%). Among the protozoan pathogens, T. equi was detected with the highest rate (7.2%), followed by T. sergenti/T. buffeli (3.7%) and B. caballi (0.35%). Simultaneous infections with up to seven pathogens were also identified. In particular, ticks infected with rickettsial pathogens were also infected with protozoan pathogens (22 samples). All five provinces investigated infected with tick-borne pathogens.  相似文献   

7.
Ticks are vectors for a variety of human and animal pathogens (bacteria, protozoa and viruses). In order to investigate the pathogens carried by ticks in Greece, a total of 179 adult ticks (114 female and 65 male) were collected from domestic animals (sheep, goats and dogs) from 14 prefectures of six regions of Greece. Among them, 40 were Dermacentor marginatus, 25 Haemaphysalis parva, 22 H. sulcata, one H. punctata, 13 Ixodes gibbosus, 77 Rhipicephalus sanguineus s.l. and one R. bursa. All ticks were tested for the presence of DNA of Anaplasma spp., Babesia spp., Coxiella burnetii, Rickettsia spp. and Theileria spp. The collected ticks were examined by PCR and reverse line blot (RLB) assay. A prevalence of 20.1% for Anaplasma spp., 15.6% for Babesia spp. (identifying B. bigemina, B. divergens, B. ovis and B. crassa), 17.9% for C. burnetii, 15.1% for Rickettsia spp., and 21.2% for Theileria spp. (identifying T. annulata, T. buffeli/orientalis, T. ovis and T. lestoquardi) was found. The results of this study demonstrate the variety of tick-borne pathogens of animal and human importance circulating in Greece, and that awareness is needed to minimize the risk of infection, especially among farmers and pet owners.  相似文献   

8.
The sika deer (Cervus nippon) is one of the most common species of wildlife in Japan. This study aimed to reveal the prevalence of tick-borne protozoan parasites in wild sika deer living in western Japan. We used nested polymerase chain reaction (PCR) to detect the 18S rRNA gene of tick-borne apicomplexan parasites (Babesia, Theileria, and Hepatozoon spp.) from 276 blood and liver samples from sika deer captured in the Yamaguchi, Oita, Kagoshima, Okayama, Ehime, Kochi, and Tokushima Prefectures. In total, 259 samples (259/276; 93.8%) tested positive in the nested PCR screening. Gene sequencing revealed that 99.6% (258/259) of positive samples contained Theileria sp. (sika 1), while Theileria sp. (sika 2), another Theileria species, was detected in only 3 samples. We also found that one sample from a sika deer captured in Kagoshima contained the gene of an unidentified Babesia sp. related to Babesia sp. Kh-Hj42, which was previously collected from tick in western Siberia. In conclusion, we found a high prevalence of piroplasms in sika deer from western Japan, and DNA analysis revealed that Theileria sp. (sika 1) had the highest infection rate.  相似文献   

9.
DNA analysis of blood meals from unfed nymphal Ixodes ricinus allows for the identification of tick host and tick-borne pathogens in the host species. The recognition of host species for tick larvae and the reservoirs of Borrelia, Rickettsia and Anaplasma species were simultaneously carried out by analysis of the blood meals of 880 questing nymphal I. ricinus ticks collected in forest parks of Szczecin city and rural forests in northwestern Poland that are endemic areas for Lyme borreliosis. The results obtained from the study indicate that I. ricinus larvae feed not only on small or medium animals but also on large animals and they (i.e. roe deer, red deer and wild boars) were the most prevalent in all study areas as the essential hosts for larvae of I. ricinus. The composition of medium and small vertebrates (carnivores, rodents, birds and lizards) provided a more diverse picture depending on study site. The reservoir species that contain the most pathogens are the European roe deer Capreolus capreolus, in which two species of Rickettsia and two species of Borrelia were identified, and Sus scrofa, in which one Rickettsia and three Borrelia species were identified. Rickettsia helvetica was the most common pathogen detected, and other included species were the B. burgdorferi s.l. group and B. miyamotoi related to relapsing fever group. Our results confirmed a general association of B. garinii with birds but also suggested that such associations may be less common in the transmission cycle in natural habitats than what was thought previously.  相似文献   

10.
Cervids host multiple species of ixodid ticks, other ectoparasites, and a variety of rickettsiae. However, diagnostic test cross‐reactivity has precluded understanding the specific role of deer in rickettsial ecology. In our survey of 128 Columbian black‐tailed deer (Odocoileus hemionus columbianus (Richardson)) and their arthropod parasites from two northern Californian herds, combined with reports from the literature, we identified four distinct Anaplasma spp. and one Ehrlichia species. Two keds, Lipoptena depressa (Say) and Neolipoptena ferrisi Bequaert, and two ixodid ticks, Ixodes pacificus Cooley and Kohls and Dermacentor occidentalis Marx, were removed from deer. One D. occidentalis was PCR‐positive for E. chaffeensis; because it was also PCR‐positive for Anaplasma sp., this is an Anaplasma/Ehrlichia co‐infection prevalence of 4.3%. 29% of L. depressa, 23% of D. occidentalis, and 14% of deer were PCR‐positive for Anaplasma spp. DNA sequencing confirmed A. bovis and A. ovis infections in D. occidentalis, A. odocoilei in deer and keds, and Anaplasma phagocytophilum strain WI‐1 in keds and deer. This is the first report of Anaplasma spp. in a North America deer ked, and begs the question whether L. depressa may be a competent vector of Anaplasma spp. or merely acquire such bacteria while feeding on rickettsemic deer.  相似文献   

11.
Lyme disease is a tick-borne zoonotic infectious disease caused by Borrelia burgdorferi. The present study assessed the infection status of B. burgdorferi among horses reared in Korea using ELISA and PCR. Between 2009 and 2013, blood samples were collected from 727 horses throughout Korea. Data for each animal including age, gender, breed, and region of sample collection were used for epidemiological analysis. Overall, 38 (5.2%; true prevalence: 5.5%) of 727 horses were seropositive by ELISA. There were statistically significant differences according to breed and region (P<0.001) whose differences might be attributed to the ecology of vector ticks and climate conditions. Using 2 nested PCR, none of the samples tested positive for B. burgdorferi. Thus, a positive ELISA result can indicate only that the tested horse was previously exposed to B. burgdorferi, with no certainty over the time of exposure. Since global warming is likely to increase the abundance of ticks in Korea, continuous monitoring of tick-borne diseases in Korean horses is needed.  相似文献   

12.
The aim of the study was to identify ticks present in the environment and wild Tunisian ruminants and to detect tick-borne pathogens and Trypanosoma evansi DNA in these specimens. Sampling was done throughout each season from the environment in three protected areas around Tunisia: El Feidja, Haddaj and Oued Dekouk. Ticks were collected also, from one fawn of Barbary red deer and eight naturally deceased wild ruminants (one Barbary red deer, five Scimitar-horned oryx, one Addax antelope and one Dorcas gazelle), all of which lived in various protected areas. PCR and nested PCRs were performed to detect the presence of Theileria spp., Babesia spp., Trypanosoma evansi, Ehrlichia spp., Anaplasma spp., Anaplasma bovis and Anaplasma phagocytophilum DNA in these tick specimens. A total of 352 ticks were collected, belonging to six different species: Hyalomma excavatum (80.6%), Hyalomma dromedarii (10.2%), Hyalomma marginatum (0.5%), Rhipicephalus bursa (0.5%), Rhipicephalus sanguineus sensu lato (5.1%) and Ixodes ricinus (2.8%). Pathogens have been detected in 25% of H. dromedarii, 9.1% of H. excavatum and 5% of R. sanguineus sensu lato. The percentage of detection of T. evansi was 0.2%. Ehrlichia spp.-Anaplasma spp. were detected in 10.1% of ticks. Anaplasma spp. and A. bovis were detected in 7.6%, and 0.8% of examined ticks, respectively. None of the Theileria spp., Babesia spp., or A. phagocytophilum DNA was detected in the tested ticks. To our knowledge, the present study represents the first identification of these six tick species and the first detection of rickettsial pathogens and T. evansi in North African wild ruminants' species. These results extend the knowledge about the diversity of ticks and tick-borne pathogens in wildlife and justify further investigations of the possible role of R. sanguineus sensu lato in the transmission of T. evansi.  相似文献   

13.
Tick-borne protozoan and rickettsial diseases are a major threat to livestock in tropical and sub-tropical regions of Africa. In this study we investigated the presence and distribution of Theileria spp., Babesia ovis, Anaplasma ovis, Anaplasma phagocytophilum, Ehrlichia ruminantium and SFG Rickettsia in sheep and goats from Free State and KwaZulu-Natal provinces. A total of 91 blood samples were screened in this study, 61 from goats and 30 from sheep. PCR assay was conducted using primers based on Theileria spp. 18S rRNA, Babesia ovis (BoSSU rRNA), Anaplasma ovis (AoMSP4), Anaplasma phagocytophilum epank1, Ehrlichia ruminantium pCS20 and SFG Rickettsia OmpA. Overall infection rates of Theileria spp., Anaplasma ovis and Ehrlichia ruminantium were 18 (19.8%), 33 (36.3%) and 13 (14.3%), respectively. The co-infection of two pathogens were detected in 17/91 (18.7%) of all samples, goats having higher rates of co-infection compared to sheep. Phylogenetic tree analysis sequence of pCS20 gene of E. ruminantium of this study was found to be in the same clade with Kumm2 and Riverside strains both from South Africa. The phylogram of SSU rRNA of Theileria ovis had longer branch length compared to all other sequences most of which were from Asia and Middle East. This study provides important data for understanding the tick-borne diseases occurrence in the study area and it is expected to improve the approach for the diagnosis and control of these diseases.  相似文献   

14.
Mites are often overlooked as vectors of pathogens, but have been shown to harbor and transmit rickettsial agents such as Rickettsia akari and Orientia tsutsugamushi. We screened DNA extracts from 27 mites representing 25 species of dermanyssoids for rickettsial agents such as Anaplasma, Bartonella, Rickettsia, and Wolbachia by PCR amplification and sequencing. DNA from Anaplasma spp., a novel Bartonella sp., Spiroplasma sp., Wolbachia sp., and an unclassified Rickettsiales were detected in mites. These could represent mite-borne bacterial agents, bacterial DNA from blood meals, or novel endosymbionts of mites.  相似文献   

15.
As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de Janeiro, Brazil. This is the first report of Paracoccus sp. infection in a specific tick population, and raises the possibility of these bacteria being maintained and/or transmitted by ticks. Whether Paracoccus sp. represents another group of pathogenic Rhodobacteraceae or simply plays a role in A. cajennense physiology, is unknown. The data also demonstrate that the rickettsial 16S rRNA specific primers used forRickettsia spp. screening can also detect Paracoccus alpha-proteobacteria infection in biological samples. Hence, a PCR-RFLP strategy is presented to distinguish between these two groups of bacteria.  相似文献   

16.
Ticks were collected from 35 animals from 5 provinces and 3 metropolitan cities during 2012. Ticks also were collected by tick drag from 4 sites in Gyeonggi-do (2) and Jeollabuk-do (2) Provinces. A total of 612 ticks belonging to 6 species and 3 genera were collected from mammals and a bird (n=573) and by tick drag (n=39). Haemaphyalis longicornis (n=434) was the most commonly collected tick, followed by H. flava (158), Ixodes nipponensis (11), Amblyomma testudinarium (7), H. japonica (1), and H. formosensis (1). H. longicornis and H. flava were collected from all animal hosts examined. For animal hosts (n>1), the highest Tick Index (TI) was observed for domestic dogs (29.6), followed by Siberian roe deer (17.4), water deer (14.4), and raccoon dogs (1.3). A total of 402 H. longicornis (adults 86, 21.4%; nymphs 160, 39.8%; larvae 156, 38.9%) were collected from wild and domestic animals. A total of 158 H. flava (n=158) were collected from wild and domestic animals and 1 ring-necked pheasant, with a higher proportion of adults (103, 65.2%), while nymphs and larvae only accounted for 12.7% (20) and 22.2% (35), respectively. Only 7 A. testudinarium were collected from the wild boar (6 adults) and Eurasian badger (1 nymph), while only 5 I. nipponensis were collected from the water deer (4 adults) and a raccoon dog (1 adult). One adult female H. formosensis was first collected from vegetation by tick drag from Mara Island, Seogwipo-si, Jeju-do Province.  相似文献   

17.
Organisms of the genera Anaplasma and Theileria are important intracellular bacteria and parasites that cause various tick-borne diseases, threatening the health of numerous animals as well as human beings. In the present study, a 12-month-old male wild South African giraffe (Giraffa camelopardalis giraffa) originating from South Africa, and living in Zhengzhou Zoo (located in the urban district of Zhengzhou in the provincial capital of Henan), suddenly developed an unknown fatal disease and died 1 day after the onset of the clinical signs. By microscopic examination of Giemsa-stained blood smears combined with nested PCR and DNA sequence analysis, Anaplasma phagocytophilum, Anaplasma bovis and a novel Theileria spp. were found in the blood of this giraffe. The six other Cervidae animals in the zoo and three ruminants living in the same colony house with them were found to be negative for both Anaplasma and Theileria in their blood specimens. We report on the first case of an A. phagocytophilum infection and the occurrence of a novel Theileria spp. in the blood of a giraffe. This is the first reported case of a multi-infection of A. bovis, A. phagocytophilum and Theileria spp. in a giraffe, as revealed by microscopic examination of blood smears and the results of nested PCR and DNA sequencing.  相似文献   

18.
Ticks are found worldwide and afflict humans with many tick-borne illnesses. Ticks are vectors for pathogens that cause Lyme disease and tick-borne relapsing fever (Borrelia spp.), Rocky Mountain Spotted fever (Rickettsia rickettsii), ehrlichiosis (Ehrlichia chaffeensis and E. equi), anaplasmosis (Anaplasma phagocytophilum), encephalitis (tick-borne encephalitis virus), babesiosis (Babesia spp.), Colorado tick fever (Coltivirus), and tularemia (Francisella tularensis) 1-8. To be properly transmitted into the host these infectious agents differentially regulate gene expression, interact with tick proteins, and migrate through the tick 3,9-13. For example, the Lyme disease agent, Borrelia burgdorferi, adapts through differential gene expression to the feast and famine stages of the tick''s enzootic cycle 14,15. Furthermore, as an Ixodes tick consumes a bloodmeal Borrelia replicate and migrate from the midgut into the hemocoel, where they travel to the salivary glands and are transmitted into the host with the expelled saliva 9,16-19.As a tick feeds the host typically responds with a strong hemostatic and innate immune response 11,13,20-22. Despite these host responses, I. scapularis can feed for several days because tick saliva contains proteins that are immunomodulatory, lytic agents, anticoagulants, and fibrinolysins to aid the tick feeding 3,11,20,21,23. The immunomodulatory activities possessed by tick saliva or salivary gland extract (SGE) facilitate transmission, proliferation, and dissemination of numerous tick-borne pathogens 3,20,24-27. To further understand how tick-borne infectious agents cause disease it is essential to dissect actively feeding ticks and collect tick saliva. This video protocol demonstrates dissection techniques for the collection of hemolymph and the removal of salivary glands from actively feeding I. scapularis nymphs after 48 and 72 hours post mouse placement. We also demonstrate saliva collection from an adult female I. scapularis tick.  相似文献   

19.
Q fever, spotted fever rickettsioses and equine piroplasmosis, are some of the most serious equine tick-borne diseases caused by Coxiella burnetii, Rickettsia spp., Babesia caballi and/or Theileria equi. This study surveyed and molecularly characterized these pathogens infecting horses in ten ranches from XUAR, China using molecular technology. Among 200 horse blood samples, 163 (81.5%) were infected with at least one of the pathogens. Rickettsia spp. was the most prevalent pathogen (n = 114, 57.0%), followed by C. burnetii (n = 79, 39.5%), T. equi (n = 79, 39.5%) and B. caballi (n = 49, 24.5%). Co-infections were observed in 61.3% of positive samples in this study. Statistically significant differences were observed between the sampling regions for C. burnetii, B. caballi and T. equi, and also in different age group for C. burnetii and T. equi. The genotype analysis indicated that C. burnetii htpB, Rickettsia spp. ompA, B. caballi rap-1, B. caballi 18S rRNA, T. equi EMA-1 and T. equi 18S rRNA gene sequences from horses in XUAR were variable. To the best of our knowledge, this study is the first report of C. burnetii and Rickettsia spp. infection and co-infected with piroplasma in horses in China. Overall, this study revealed the high infection rate of the pathogens in horses in XUAR, China. The current findings are expected to provide a basis for better tick-borne disease control in the region.  相似文献   

20.
Anaplasma species are tick-transmitted pathogens that impact veterinary and human health. Sicily is one of the locations where these pathogens are endemic. Sicily represents a typical Mediterranean ecosystem to study Anaplasma infection and tick habitat suitability. The aims of this study were (i) to characterize by 16S rRNA and species-specific msp4 gene PCR the prevalence and genotypes of A. marginale, A. phagocytophilum, and A. ovis in the most abundant host species in Sicilian provinces and (ii) to correlate differences between hosts and between western and eastern Sicily with the habitat suitability for ticks in these regions. Differences were found in the prevalence of Anaplasma spp. between different hosts and between western and eastern provinces. The differences in Anaplasma prevalence between different hosts may be explained by pathogen host tropism. The differences between western and eastern provinces correlated with the tick habitat suitability in these regions. The analysis of Anaplasma genotypes suggested a higher host and regional specificity for A. phagocytophilum than for A. marginale and A. ovis strains, a finding probably associated with the broader host range of A. phagocytophilum. The presence of identical A. marginale genotypes in the two regions may reflect cattle movement. The results for A. ovis suggested the possibility of some genotypes being host specific. These results provide information potentially useful for the management of tick-borne diseases caused by Anaplasma spp. in Sicily and other Mediterranean regions and may contribute to the development of models to predict the risks for these tick-borne pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号