首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Overexpression of HER2, a receptor-like tyrosine kinase and signaling partner for the epidermal growth factor receptor (EGFR), has been implicated in numerous experimental and clinical studies as promoting the progression of many types of cancer. One avenue by which HER2 overexpression may dysregulate EGFR-mediated cell responses, such as proliferation and migration, downstream of EGF family ligand binding, is by its modulation on EGFR endocytic trafficking dynamics. EGFR signaling is regulated by downregulation and compartmental relocalization arising from endocytic internalization and endosomal sorting to degradation versus recycling fates. HER2 overexpression influences both of these processes. At the endosomal sorting stage, increased HER2 levels elicit enhanced EGFR recycling outcomes, but the mechanism by which this transpires is poorly understood. Here, we determine whether alternative mechanisms for HER2-mediated enhancement of EGFR recycling can be distinguished by comparison of corresponding mathematical models to experimental literature data. Indeed, we find that the experimental data are clearly most consistent with a mechanism in which HER2 directly competes with EGFR for a stoichiometrically-limited quantity of endosomal retention components (ERCs), thereby reducing degradation of ERC-coupled EGFR. Model predictions based on this mechanism exhibited qualitative trends highly similar to data on the fraction of EGF/EGFR complexes sorted to recycling fate as a function of the amount of internalized EGF/EGFR complexes. In contrast, model predictions for alternative mechanisms-blocking of EGFR/ERC coupling, or altering EGF/EGFR dissociation-were inconsistent with the qualitative trends of the experimental data.  相似文献   

2.
Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR) family. Many cell types express multiple EGFR family members (including EGFR, HER2, HER3, and/or HER4) that interact to form an array of homo- and heterodimers. Differential trafficking of these receptors should strongly affect signaling through this system by changing substrate access and heterodimerization efficiency. Because of the complexity of these dynamic processes, we used a quantitative and computational model to understand their integrated operation. Parameters characterizing EGFR and HER2 interactions were determined using experimental data obtained from mammary epithelial cells constructed to express different levels of HER2, enabling us to estimate receptor-specific internalization rate constants and dimer uncoupling rate constants. Significant novel results obtained from this work are as follows: first, that EGFR homodimerization and EGFR/HER2 heterodimerization occur with comparable affinities; second, that EGFR/HER2 heterodimers traffic as single entities. Furthermore, model predictions of the relationship of HER2 expression levels to consequent distribution of EGFR homodimers and EGFR/HER2 heterodimers suggest that the levels of HER2 found on normal cells are barely at the threshold necessary to drive efficient heterodimerization. Thus, altering HER2 concentrations, either overall or local, could provide an effective mechanism for regulating EGFR/HER2 heterodimerization and may explain why HER2 overexpression found in some cancers has such a profound effect on cell physiology.  相似文献   

3.
Human epidermal growth factor receptor‐2 (HER2) is a tyrosine kinase family protein receptor that is known to undergo heterodimerization with other members of the family of epidermal growth factor receptors (EGFR) for cell signaling. Overexpression of HER2 and deregulation of signaling has implications in breast, ovarian, and lung cancers. We have designed several peptidomimetics to block the HER2‐mediated dimerization, resulting in antiproliferative activity for cancer cells. In this work, we have investigated the structure–activity relationships of peptidomimetic analogs of Compound 5. Compound 5 was conformationally constrained by N‐ and C‐terminal modification and cyclization as well as by substitution with d ‐amino acids at the N‐and C‐termini. Among the compounds studied in this work, a peptidomimetic Compound 21 with d ‐amino acid substitution and its N‐ and C‐termini capped with acetyl and amide functional groups and a reversed sequence compared to that of Compound 5 exhibited better antiproliferative activity in HER2‐overexpressed breast, ovarian, and lung cancer cell lines. Compound 21 was further evaluated for its protein–protein interaction (PPI) inhibition ability using enzyme fragment complementation assay, proximity ligation assay, and Western blot analysis. Results suggested that Compound 21 is able to block HER2:HER3 interaction and inhibit phosphorylation of the kinase domain of HER2. The mode of binding of Compound 21 to HER2 protein was modeled using a docking method. Compound 21 seems to bind to domain IV of HER2 near the PPI site of EGFR:HER2, and HER:HER3 and inhibit PPI. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 693–702, 2014.  相似文献   

4.
《MABS-AUSTIN》2013,5(2):340-353
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert.  相似文献   

5.
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert.  相似文献   

6.
The receptor tyrosine kinase HER2 is associated with a number of human malignancies and is an important therapeutic target. The antibody‐drug conjugate trastuzumab emtansine (T‐DM1; Kadcyla®) is recommended as a first‐line treatment for patients with HER2‐positive metastatic breast cancer. T‐DM1 combines the antibody‐induced effects of the anti‐HER2 antibody trastuzumab (Herceptin®) with the cytotoxic effect of the tubulin inhibitor mertansine (DM1). For DM1 to have effect, the T‐DM1‐HER2 complex has to be internalized and the trastuzumab part of T‐DM1 has to be degraded. HER2 is, however, considered endocytosis‐resistant. As a result of this, trastuzumab is only internalized to a highly limited extent, and if internalized, it is rapidly recycled. The exact reasons for the endocytosis resistance of HER2 are not clear, but it is stabilized by heat‐shock protein 90 (Hsp90) and Hsp90 inhibitors induce internalization and degradation of HER2. HER2 can also be internalized upon activation of protein kinase C, and contrary to trastuzumab alone, the combination of two or more anti‐HER2 antibodies can induce efficient internalization and degradation of HER2. With intention to find ways to improve the action of T‐DM1, we investigated how different ways of inducing HER2 internalization leads to degradation of trastuzumab. The results show that although both Hsp90 inhibition and activation of protein kinase C induce internalization of trastuzumab, only Hsp90 inhibition induces degradation. Furthermore, we find that antibody internalization and degradation are increased when trastuzumab is combined with the clinically approved anti‐HER2 antibody pertuzumab (Perjeta®).  相似文献   

7.
The epidermal growth factor receptor ( EGFR ) is an important regulator of normal growth and differentiation, and it is involved in the pathogenesis of many cancers. Endocytic downregulation is central in terminating EGFR signaling after ligand stimulation. It has been shown that p38 MAPK activation also can induce EGFR endocytosis. This endocytosis lacks many of the characteristics of ligand‐induced EGFR endocytosis. We compared the two types of endocytosis with regard to the requirements for proteins in the internalization machinery. Both types of endocytosis require clathrin, but while epidermal growth factor (EGF) ‐induced EGFR internalization also required Grb 2 , p38 MAPK ‐induced internalization did not. Interestingly , AP ‐2 knock down blocked p38 MAPK ‐induced EGFR internalization, but only mildly affected EGF ‐induced internalization. In line with this, simultaneously mutating two AP ‐2 interaction sites in EGFR affected p38 MAPK ‐induced internalization much more than EGF ‐induced EGFR internalization. Thus, it seems that EGFR in the two situations uses different sets of internalization mechanisms.  相似文献   

8.
The epidermal growth factor receptor (EGFR) is over‐expressed in a variety of human cancers. Downstream signalling of this receptor is tightly regulated both spatially and temporally by controlling its internalization and subsequent degradation. Internalization of the EGFR requires dynamin 2 (Dyn2), a large GTPase that deforms lipid bilayers, leading to vesicle scission. The adaptor protein CIN85 (cbl‐interacting protein of 85 kDa), which has been proposed to indirectly link the EGFR to the endocytic machinery at the plasma membrane, is also thought to be involved in receptor internalization. Here, we report a novel and direct interaction between Dyn2 and CIN85 that is induced by EGFR stimulation and, most surprisingly, occurs late in the endocytic process. Importantly, disruption of the CIN85–Dyn2 interaction results in accumulation of internalized EGFR in late endosomes that become aberrantly elongated into distended tubules. Consistent with the accumulation of this receptor is a sustention of downstream signalling cascades. These findings provide novel insights into a previously unknown protein complex that can regulate EGFR traffic at very late stages of the endocytic pathway.  相似文献   

9.
Human epidermal growth factor receptor 2 (HER2) belongs to the EGFR family of receptor tyrosine kinases that comprises four members. As opposed to the other family members, HER2 does not require ligand binding for activation. Hence, HER2 molecules can undergo spontaneous dimerization, autophosphorylation and activation of downstream signaling pathways especially under conditions of overexpression, a commonly encountered phenomenon in breast cancer. In this study, we sought to investigate the mechanism by which HER2 musters signaling and transformation potency. We show that HER2 overexpression per se induces a significant increase in basal mitogenic and cell survival signaling, which was augmented by EGF stimulation. Inhibition of the normally expressed EGFR significantly suppressed the ability of overexpressed HER2 to induce enhanced signaling and cell transformation, suggesting that HER2 requires the EGFR and potentially other members to maximize its signaling and transformation potency. The novel observation revealed by prolonged EGF stimulation studies was the biphasic signaling pattern in the presence of HER2 overexpression that suggested the induction of a short-circuited mechanism, permitting sustained signaling. Our results further show that the short-circuited signaling was due to the re-shuttling of internalized receptor molecules to the Rab11-positive recycling endosomes, while suppressing channeling to the LAMP1-positive lysosome-targeting endosomes. Therefore, HER2's oncogenicity is dependent, not only on its constitutively active nature, but also on its ability to muster collaborative signaling from family members through modulation of ligand-induced receptor regulation.  相似文献   

10.
The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies.  相似文献   

11.
The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (KadcylaTM). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA’) fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA’, was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA’-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.  相似文献   

12.
《MABS-AUSTIN》2013,5(2):392-402
The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (KadcylaTM). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA’) fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA’, was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA’-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.  相似文献   

13.
Aberrant signaling of ErbB family members human epidermal growth factor 2 (HER2) and epidermal growth factor receptor (EGFR) is implicated in many human cancers, and HER2 expression is predictive of human disease recurrence and prognosis. Small molecule kinase inhibitors of EGFR and of both HER2 and EGFR have received approval for the treatment of cancer. We present the first high resolution crystal structure of the kinase domain of HER2 in complex with a selective inhibitor to understand protein activation, inhibition, and function at the molecular level. HER2 kinase domain crystallizes as a dimer and suggests evidence for an allosteric mechanism of activation comparable with previously reported activation mechanisms for EGFR and HER4. A unique Gly-rich region in HER2 following the α-helix C is responsible for increased conformational flexibility within the active site and could explain the low intrinsic catalytic activity previously reported for HER2. In addition, we solved the crystal structure of the kinase domain of EGFR in complex with a HER2/EGFR dual inhibitor (TAK-285). Comparison with previously reported inactive and active EGFR kinase domain structures gave insight into the mechanism of HER2 and EGFR inhibition and may help guide the design and development of new cancer drugs with improved potency and selectivity.  相似文献   

14.
Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3’s function as an allosteric activator and its role in downstream signaling.  相似文献   

15.
The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.  相似文献   

16.
17.
《MABS-AUSTIN》2013,5(4):978-990
HER2, a ligand-free tyrosine kinase receptor of the HER family, is frequently overexpressed in breast cancer. The anti-HER2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer; however, resistance to trastuzumab is common. The development of monoclonal antibodies that have complementary mechanisms of action results in a more comprehensive blockade of ErbB2 signaling, especially HER2/HER3 signaling. Use of such antibodies may have clinical benefits if these antibodies can become widely accepted. Here, we describe a novel anti-HER2 antibody, hHERmAb-F0178C1, which was isolated from a screen of a phage display library. A step-by-step optimization method was employed to maximize the inhibitory effect of this anti-HER2 antibody. Crystallographic analysis was used to determine the three-dimensional structure to 3.5 Å resolution, confirming that the epitope of this antibody is in domain III of HER2. Moreover, this novel anti-HER2 antibody exhibits superior efficacy in blocking HER2/HER3 heterodimerization and signaling, and its use in combination with pertuzumab has a synergistic effect. Characterization of this antibody revealed the important role of a ligand binding site within domain III of HER2. The results of this study clearly indicate the unique potential of hHERmAb-F0178C1, and its complementary inhibition effect on HER2/HER3 signaling warrants its consideration as a promising clinical treatment.  相似文献   

18.
HER2, a ligand-free tyrosine kinase receptor of the HER family, is frequently overexpressed in breast cancer. The anti-HER2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer; however, resistance to trastuzumab is common. The development of monoclonal antibodies that have complementary mechanisms of action results in a more comprehensive blockade of ErbB2 signaling, especially HER2/HER3 signaling. Use of such antibodies may have clinical benefits if these antibodies can become widely accepted. Here, we describe a novel anti-HER2 antibody, hHERmAb-F0178C1, which was isolated from a screen of a phage display library. A step-by-step optimization method was employed to maximize the inhibitory effect of this anti-HER2 antibody. Crystallographic analysis was used to determine the three-dimensional structure to 3.5 Å resolution, confirming that the epitope of this antibody is in domain III of HER2. Moreover, this novel anti-HER2 antibody exhibits superior efficacy in blocking HER2/HER3 heterodimerization and signaling, and its use in combination with pertuzumab has a synergistic effect. Characterization of this antibody revealed the important role of a ligand binding site within domain III of HER2. The results of this study clearly indicate the unique potential of hHERmAb-F0178C1, and its complementary inhibition effect on HER2/HER3 signaling warrants its consideration as a promising clinical treatment.  相似文献   

19.
HER2, a member of the epidermal growth factor receptor (EGFR) tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we applied a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2 and their downstream activation of ERK to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we could separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrated that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activate ERK were quantitatively equivalent. We found that HER2-mediated effects on EGFR dimerization and trafficking were sufficient to explain the observed HER2-mediated amplification of epidermal growth factor-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared with the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking yielding increased EGFR sparing cause the sustained HER2-mediated enhancement of ERK signaling.  相似文献   

20.
The human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor (EGFR) family, and it plays an important role in the development of many human adenocarcinomas. The extracellular domain (ECD) of HER2 is an ideal target for therapeutic approaches. In order to obtain large quantities of active HER2 ECD protein for biochemical and structural analysis and for detecting anti-HER2 ECD antibodies in serum, a systematic assessment of optimal parameters for the refolding of the glutathione S-transferase (GST) fusion protein was carried out. After the GST-HER2 ECD inclusion bodies were solubilized with denaturation buffer containing 8M urea, an approach was then used to optimize refolding parameters. This approach utilized dilution of denatured and reduced GST-HER2 ECD into different refolding buffers using orthogonal design method. Optimal refolding was obtained in an alkaline buffer containing reduced and oxidized glutathione, and subsequent incubation at 4 degrees C for 24h. After purification with glutathione Sepharose 4B and PreScission protease cleavage of the fusion protein, 8.9mg of recombinant HER2 ECD was obtained from 1L of Escherichia coli. Rabbit polyclonal antibodies against HER2 ECD were obtained. The purified protein was found to be immunogenic and useful for immunodiagnostic studies of serum HER2 ECD and its antibodies by using enzyme-linked immunosorbent assay (ELISA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号