首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Lactic acid bacteria (LAB) were isolated from the intestinal tract of the wild clam Meretrix lamarckii caught from the coastal waters of Kashima, Ibaraki, Japan. As many as 415 isolates were obtained using the culture method, of which 70 were considered presumptive LAB strains based on phenotypic tests. Phylogenetic analysis of these presumptive isolates of LAB based on the sequence of the 16S rRNA gene demonstrated that the species belonged to several genera of Lactobacillus, Lactococcus and Pediococcus. Interestingly, however, the species composition was different between the samples in July and October 2010. Further analyses based on the fermentation profiles revealed that the LAB from the clam caught in July 2010 were identified to be Lactobacillus curvatus, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris and Pediococcus pentosaceus, whereas those in October 2010 were identified to be Lactobacillus plantarum, Lactococcus lactis subsp. lactis and P. pentosaceus. The diversity of LAB in the intestinal tract of the clam suggests that the filter feeder bivalves such as M. lamarckii are a rich repository of marine isolates of LAB.  相似文献   

2.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).  相似文献   

3.
Lactic acid bacteria (LAB) are generally accepted as beneficial to the host and their presence is directly influenced by ingestion of fermented food or probiotics. While the intestinal lactic microbiota is well-described knowledge on its routes of inoculation and competitiveness towards selective pressure shaping the intestinal microbiota is limited. In this study, LAB were isolated from faecal samples of breast feeding mothers living in Syria, from faeces of their infants, from breast milk as well as from fermented food, typically consumed in Syria. A total of 700 isolates were characterized by genetic fingerprinting with random amplified polymorphic DNA (RAPD) and identified by comparative 16S rDNA sequencing and Matrix Assisted Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analyses. Thirty six different species of Lactobacillus, Enterococcus, Streptococcus, Weissella and Pediococcus were identified. RAPD and MALDI-TOF-MS patterns allowed comparison of the lactic microbiota on species and strain level. Whereas some species were unique for one source, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Lactobacillus brevis were found in all sources. Interestingly, identical RAPD genotypes of L. plantarum, L. fermentum, L. brevis, Enterococcus faecium, Enterococcus faecalis and P. pentosaceus were found in the faeces of mothers, her milk and in faeces of her babies. Diversity of RAPD types found in food versus human samples suggests the importance of host factors in colonization and individual host specificity, and support the hypothesis that there is a vertical transfer of intestinal LAB from the mother's gut to her milk and through the milk to the infant's gut.  相似文献   

4.
In this study, a total of 104 strains of lactic acid bacteria (LAB) were tested for the presence of genes encoding enzymes related to peptide and amino acid utilization in winemaking. Primers for PCR amplifications were designed from conserved regions of genes isolated from various LAB species belonging to Lactobacillus, Leuconostoc, Pediococcus and Oenococcus. As expected, PCR assays generated single DNA fragments of the correct sizes. The PCR detection results revealed that the genes tested for were distributed across the different species of lactobacilli and pediococci investigated. However, some strains of Pediococcus did not possess certain enzyme-encoding genes, such as pepO, pepT, metK and gshR. In addition, pepX and metB/metC were not detected in any of the Pediococcus strains tested. The Lactobacillus plantarum IWBT B349 strain was selected for gene sequence verification. The results of the comparative sequence analysis demonstrated that nucleotide gene sequences of this strain are highly identical to those of other L. plantarum strains (WCFS1, JDM1 and ATCC 14917) published in GenBank database. Neighbour-joining trees based on the pepC and pepM gene sequences were also constructed, and these indicated that there was a similar trend of clustering of bacterial species between the two genes. Altogether, the results presented here indicate that lactobacilli and pediococci strains of wine origin have the genetic potential to degrade peptides and sulphur-containing amino acids during vinification.  相似文献   

5.
6.
The purpose of this work was to analyse the diversity and dynamics of lactic acid bacteria (LAB) throughout the fermentation process in Atole agrio, a traditional maize based food of Mexican origin. Samples of different fermentation times were analysed using culture-dependent and -independent approaches. Identification of LAB isolates revealed the presence of members of the genera Pediococcus, Weissella, Lactobacillus, Leuconostoc and Lactococcus, and the predominance of Pediococcus pentosaceus and Weissella confusa in liquid and solid batches, respectively. High-throughput sequencing (HTS) of the 16S rRNA gene confirmed the predominance of Lactobacillaceae and Leuconostocaceae at the beginning of the process. In liquid fermentation Acetobacteraceae dominate after 4 h as pH decreased. In contrast, Leuconostocaceae dominated the solid fermentation except at 12 h that were overgrown by Acetobacteraceae. Regarding LAB genera, Lactobacillus dominated the liquid fermentation except at 12 h when Weissella, Lactococcus and Streptococcus were the most abundant. In solid fermentation Weissella predominated all through the process. HTS determined that Lactobacillus plantarum and W. confusa dominated in the liquid and solid batches, respectively. Two oligotypes have been identified for L. plantarum and W. confusa populations, differing in a single nucleotide position each. Only one of the oligotypes was detected among the isolates obtained from each species, the biological significance of which remains unclear.  相似文献   

7.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

8.
The objective of this work was to investigate the structure and diversity of lactic acid bacteria (LAB) communities in traditionally fermented meat collected from different areas of Tunisia. A polyphasic study, which involves phenotypic tests and ribosomal DNA-based techniques, was used to identify Gram-positive and catalase-negative isolates. PCR amplification of the 16S–23S rDNA ISR of 102 isolates and other reference LAB strains gave (1) one type of rrn operon (M-ISR) for lactococci, (2) two types of rrn operon (S-ISR and M-ISR) for enterococci, (3) two types of rrn operon (S-ISR and L-ISR) for Lactobacilli, and (4) three PCR amplicons (S-ISR, M-ISR, and L-ISR) obtained for Pediococcus spp. and Weissella genus. The clustering and comparison of ISR–RFLP profiles given by the isolates with those given by reference LAB strains, allowed their identification as Lactococcus lactis, Enterococcus faecium, Enterococcus faecalis, Enterococcus sanguinicola, Enterococcus hawaiiensis, Lactobacillus sakei, Lactobacillus curvatus, Lactobacillus plantarum, Lactobacillus alimentarius, Pediococcus pentosaceus, and Weissella confusa. Combined 16S–23S rDNA ISR and RFLP patterns can be considered as a good potential target for a rapid and reliable differentiation between isolates of LAB and provided further information on the organization of their rrn operons.  相似文献   

9.
A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.  相似文献   

10.
The present study focused on identification and genotypic characterization of Lactic acid bacteria (LAB) in the intestine of freshwater fish. 76 strains of LAB were isolated and identified by 16S rRNA gene sequences and hsp60 gene sequences as different strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus fermentum, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus brevis, Lactobacillus reuteri, Lactobacillus salivarius, Pediococcus pentosaceus, Pediococcus acidilactici, Weissella paramesenteroides, Weissella cibaria, Enterococcus faecium, and Enterococcus durans. The hsp60 gene showed a higher level of sequence variation among the isolates examined, with lower interspecies sequence similarity providing more resolutions at the species level than the 16S rRNA gene. Phylogenetic tree derived from hsp60 gene sequences with higher bootstrap values at the nodal branches was more consistent as compared to phylogenetic tree constructed from 16S rRNA gene sequences. Closely related species L. plantarum and L. pentosus as well as species L. delbrueckii subsp. bulgaricus and L. fermentum were segregated in different cluster in hsp60 phylogenetic tree whereas such a distribution was not apparent in 16S rRNA phylogenetic tree. In silico restriction analysis revealed a high level of polymorphism within hsp60 gene sequences. Restriction pattern with enzymes AgsI and MseI in hsp60 gene sequences allowed differentiation of all the species including closely related species L. plantarum and L. pentosus, E. faecium and E. durans. In general, hsp60 gene with higher evolutionary divergence proved to be a better phylogenetic marker for the group LAB.  相似文献   

11.
We describe the first functional insertion sequence (IS) element in Lactobacillus plantarum. ISLpl1, an IS30-related element, was found on the pLp3 plasmid in strain FB335. By selection of spontaneous mutants able to grow in the presence of uracil, it was demonstrated that the IS had transposed into the uracil phosphoribosyltransferase-encoding gene upp on the FB335 chromosome. The plasmid-carried IS element was also sequenced, and a second potential IS element was found: ISLpl2, an IS150-related element adjacent to ISLpl1. When Southern hybridization was used, the copy number and genome (plasmid versus chromosome) distribution data revealed different numbers and patterns of ISLpl1-related sequences in different L. plantarum strains as well as in Pediococcus strains. The ISLpl1 pattern changed over many generations of the strain L. plantarum NCIMB 1406. This finding strongly supports our hypothesis that ISLpl1 is a mobile element in L. plantarum. Database analysis revealed five quasi-identical ISLpl1 elements in Lactobacillus, Pediococcus, and Oenococcus strains. Three of these elements may be cryptic IS, since point mutations or 1-nucleotide deletions were found in their transposase-encoding genes. In some cases, ISLpl1 was linked to genes involved in cold shock adaptation, bacteriocin production, sugar utilization, or antibiotic resistance. ISLpl1 is transferred among lactic acid bacteria (LAB) and may play a role in LAB genome plasticity and adaptation to their environment.  相似文献   

12.
Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (DGGE) was tested as a tool for differentiation of lactic acid bacteria commonly isolated from food. Variable V3 regions of 21 reference strains and 34 wild strains referred to species belonging to the genera Pediococcus, Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, Weissella, and Streptococcus were analyzed. DGGE profiles obtained were species-specific for most of the cultures tested. Moreover, it was possible to group the remaining LAB reference strains according to the migration of their 16S V3 region in the denaturing gel. The results are discussed with reference to their potential in the analysis of LAB communities in food, besides shedding light on taxonomic aspects. Received: 2 August 2000 / Accepted: 5 September 2000  相似文献   

13.
This study used SNaPshot minisequencing for species identification within the Lactobacillus plantarum group. A SNaPshot minisequencing assay using dnaK as a target gene was developed, and five SNP primers were designed by analysing the conserved regions of the dnaK sequences. The specificity of the minisequencing assay was evaluated using 35 strains of L. plantarum group species. The results showed that the SNaPshot minisequencing assay was able to unambiguously and simultaneously discriminate strains belonging to the species L. plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus fabifermentans. In conclusion, a rapid, accurate and cost-effective assay was successfully developed for species identification of the members of the L. plantarum group.  相似文献   

14.
A total of 54 lactic acid bacteria (LAB) were isolated from stored wheat samples sourced from grain silos in North Tunisia. Fifteen representative isolates were identified by 16S rDNA sequencing as Pediococcus pentosaceus, Lactobacillus plantarum, Lactobacillus graminis, Lactobacillus coryniformis and Weissella cibaria. These isolates were screened for antifungal activity in dual culture agar plate assay against eight post-harvest moulds (Penicillium expansum, Penicillium chrysogenum, Penicillium glabrum, Aspergillus flavus, Aspergillus niger, Aspergillus carbonarius, Fusarium graminearum and Alternaria alternata). All LAB showed inhibitory activity against moulds, especially strains of L. plantarum which exhibited a large antifungal spectrum. Moreover, LAB species such as L. plantarum LabN10, L. graminis LabN11 and P. pentosaceus LabN12 showed high inhibitory effects against the ochratoxigenic strain A. carbonarius ANC89. These LAB were also investigated for their ability to reduce A. carbonarius ANC89 biomass and its ochratoxin A (OTA) production on liquid medium at 28 and 37 °C and varied pH conditions. The results indicated that factors such as temperature, pH and bacterial biomass on mixed cultures, has a significant effect on fungal inhibition and OTA production. High percentage of OTA reduction was obtained by L. plantarum and L. graminis (>97%) followed by P. pentosaceus (>81.5%). These findings suggest that in addition to L. plantarum, L. graminis and P. pentosaceus strains may be exploited as a potential OTA detoxifying agent to protect humans and animals health against this toxic metabolite.  相似文献   

15.
Lactobacillus pobuzihii is a novel species which has been previously found in pobuzihi (fermented cummingcordia), a traditional fermented food in Taiwan. However, the lactic acid bacteria (LAB) microflora in pobuzihi has not been studied in detail. In this study, LAB from pobuzihi were isolated, identified, and characterized. A total of 196 LAB were isolated; 79 cultures were isolated from the sample collected from a manufacturing factory, 38 from pobuzihi samples collected from 4 different markets, and 79 from 2 fresh cummingcordia samples. These isolates were characterized phenotypically and then divided into eight groups (A to H) by restriction fragment length polymorphism analysis and sequencing of 16S ribosomal DNA. Lactobacillus plantarum was the most abundant LAB found in most samples during the fermentation of pobuzihi. On the other hand, Enterococcus casseliflavus and Weissella cibaria were, respectively, the major species found in the two fresh cummingcordia samples. A potential novel species or subspecies of lactococcal strain was found. In addition, seven L. plantarum and five W. cibaria strains showed inhibitory activity against the indicator strain Lactobacillus sakei JCM 1157T. This is the first report describing the distribution and varieties of LAB existing in the pobuzihi during its fermentation process and the final product on the market.  相似文献   

16.
The objective of the present study was to investigate lactic acid bacteria (LAB) isolated from kimchi for their potential probiotic use. Ten preselected LAB strains were evaluated for their functionality and safety. Examined characteristics included acid and bile tolerance, cell adhesion, antimicrobial activity against pathogens, hemolytic activity, undesirable biochemical characteristics, and antibiotic resistance. Results indicated that consumption of these 10 strains does not pose any health risk, as they were not hemolytic and exhibited no undesirable biochemical activity or antibiotic resistance. In particular, three strains, Lactobacillus plantarum NO1, Pediococcus pentosaceus MP1, and Lactobacillus plantarum AF1, showed high degrees of acid and bile tolerance, adherence to Caco-2 and HT-29 cells, and antimicrobial activity against four pathogens (Staphylococcus aureus, Escherichia coli O157:H7, Salmonella typhi, and Listeria monocytogenes). These results suggest that LAB strains from kimchi may have potential use as novel probiotics.  相似文献   

17.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments generated by PCR with 16S ribosomal DNA-targeted group-specific primers was used to detect lactic acid bacteria (LAB) of the genera Lactobacillus, Pediococcus, Leuconostoc, and Weissella in human feces. Analysis of fecal samples of four subjects revealed individual profiles of DNA fragments originating not only from species that have been described as intestinal inhabitants but also from characteristically food-associated bacteria such as Lactobacillus sakei, Lactobacillus curvatus, Leuconostoc mesenteroides, and Pediococcus pentosaceus. Comparison of PCR-DGGE results with those of bacteriological culture showed that the food-associated species could not be cultured from the fecal samples by plating on Rogosa agar. On the other hand, all of the LAB species cultured from feces were detected in the DGGE profile. We also detected changes in the types of LAB present in human feces during consumption of a milk product containing the probiotic strain Lactobacillus rhamnosus DR20. The analysis of fecal samples from two subjects taken before, during, and after administration of the probiotic revealed that L. rhamnosus was detectable by PCR-DGGE during the test period in the feces of both subjects, whereas it was detectable by culture in only one of the subjects.  相似文献   

18.
The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, as Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus lactis, Lactobacillus delbrueckii, and Streptococcus thermophilus, while the other strains, all belonging to the genus Enterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions.  相似文献   

19.
The present study shows that, from 300 Lactobacillus strains isolated from the oral cavity and large intestine of 600 healthy people, only 9 had high antagonistic activity against pathogens and opportunistic pathogens. All antagonistic strains of lactobacilli have been identified by 16S rRNA sequencing and assigned to four species: Lactobacillus fermentum, Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus casei. In addition, these lactobacilli appeared to be nonpathogenic and had some probiotic potential: the strains produced lactic acid and bacteriocins, showed high sensitivity to broad-spectrum antibiotics, and were capable of forming biofilms in vitro. With the help of PCR and specific primers, the presence of genes for prebacteriocins in L. plantarum (plnEF, plnJ, plnN) and L. rhamnosus (LGG_02380 and LGG_02400) has been revealed. It was found that intestinal strains of lactobacilli were resistant to hydrochloric acid and bile. Lactobacilli isolated from the oral cavity were characterized by a high degree of adhesion, whereas intestinal strains were characterized by average adhesion. Both types of lactobacilli had medium to high rates of auto-aggregation and hydrophobicity and could coaggregate with pathogens and opportunistic pathogens. Additionally, the ability of the lactobacilli strains to produce gasotransmitters, CH4, CO2, C2H6, CO, and NH3, has been revealed.  相似文献   

20.
The distribution of microorganisms in pozol balls, a fermented maize dough, was investigated by a polyphasic approach in which we used both culture-dependent and culture-independent methods, including microbial enumeration, fermentation product analysis, quantification of microbial taxa with 16S rRNA-targeted oligonucleotide probes, determination of microbial fingerprints by denaturing gradient gel electrophoresis (DGGE), and 16S ribosomal DNA gene sequencing. Our results demonstrate that DGGE fingerprinting and rRNA quantification should allow workers to precisely and rapidly characterize the microbial assemblage in a spontaneous lactic acid fermented food. Lactic acid bacteria (LAB) accounted for 90 to 97% of the total active microflora; no streptococci were isolated, although members of the genus Streptococcus accounted for 25 to 50% of the microflora. Lactobacillus plantarum and Lactobacillus fermentum, together with members of the genera Leuconostoc and Weissella, were the other dominant organisms. The overall activity was more important at the periphery of a ball, where eucaryotes, enterobacteria, and bacterial exopolysacharide producers developed. Our results also showed that the metabolism of heterofermentative LAB was influenced in situ by the distribution of the LAB in the pozol ball, whereas homolactic fermentation was controlled primarily by sugar limitation. We propose that starch is first degraded by amylases from LAB and that the resulting sugars, together with the lactate produced, allow a secondary flora to develop in the presence of oxygen. Our results strongly suggest that cultivation-independent methods should be used to study traditional fermented foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号