首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
应激诱导的细胞早衰与复制性细胞衰老有相似的细胞表型,但其机制不尽相同.分析二者的衰老相关基因表达特点对了解应激因素诱导细胞衰老的机制有重要意义. 本文对过氧化氢诱导的HeLa细胞早衰过程中的关键衰老相关基因及其转录后调控因子的表达做了分析.结果发现,在复制性衰老过程中明显降低的cyclin A、cyclin B1、c-fos及HuR,在温和过氧化氢诱导的细胞早衰过程中并无明显改变;在氧化应激诱导的细胞早衰过程中,p21与p16表达升高,AUF1则降低,与复制性衰老过程一致;p21 mRNA半衰期在复制性衰老过程中无明显变化,但在氧化应激诱导的细胞早衰过程中则显著延长.上述结果提示,尽管氧化应激诱导的细胞早衰与复制性衰老存在相似基因表达变化,调控机制则不尽相同.  相似文献   

3.

Background

HuR (human antigen R) is a ubiquitously expressed member of the Hu/ELAV family of proteins that is involved in diverse biological processes. HuR has also been shown to play an important role in cell cycle arrest during replicative senescence in both human and mouse cells. Senescent cells not only halt their proliferation, but also activate the secretion of proinflammatory cytokines. A persistent DNA damage response is essential for the senescence-associated secretory phenotype (SASP), and increasing evidence has suggested that the SASP is associated with malignancy.

Methods

Senescence-associated phenotypes were analyzed in MEFs and other cell line in which HuR expression is inhibited by sh-RNA-mediated knockdown.

Results

RNAi-mediated HuR inhibition resulted in an increase in SASP-related cytokines. The induction of SASP factors did not depend on ARF–p53 pathway-mediated cell cycle arrest, but required NF-κB activity. In the absence of HuR, cells were defective in the DNA-damage response, and single strand DNA breaks accumulated, which may have caused the activation of NF-κB and subsequent cytokine induction.

Conclusions

In the absence of HuR, cells exhibit multiple senescence-associated phenotypes. Our findings suggest that HuR regulates not only the replicative lifespan, but also the expression of SASP-related cytokines in mouse fibroblasts.

General significance

RNA-binding protein HuR protects cells from undergoing senescence. Senescence-associated phenotypes are accelerated in HuR-deficient cells.  相似文献   

4.
Autophagy has been implicated in delayed aging and extended longevity. Here, we aimed to study the possible effects of autophagy during the progression of replicative senescence, which is one of the major features of aging. Human foreskin fibroblasts, Hs68 cells, at an initial passage of 15 were serially cultured for several months until they reached cellular senescence. A decrease in cell proliferation was observed during the progression of senescence. Induction of replicative senescence in aged cells (at passage 40) was confirmed by senescence-associated β-galactosidase (SA-β-gal) activity that represents a sensitive and reliable marker for quantifying senescent cells. We detected a significantly increased percentage (%) of SA-β-gal-positive cells at passage 40 (63%) when compared with the younger SA-β-gal-positive cells at passage 15 (0.5%). Notably, the gradual decrease in basal autophagy coincided with replicative senescence induction. However, despite decreased basal autophagic activity in senescent cells, autophagy inducers could induce autophagy in senescent cells. RT-PCR analysis of 11 autophagy-related genes revealed that the decreased basal autophagy in senescent cells might be due to the downregulation of autophagy-regulatory proteins, but not autophagy machinery components. Moreover, the senescence phenotype was not induced in the cells in which rapamycin was added to the culture to continuously induce autophagy from passage 29 until passage 40. Together, our findings suggest that reduced basal autophagy levels due to downregulation of autophagy-regulatory proteins may be the mechanism underlying replicative senescence in Hs68 cells.  相似文献   

5.
VPF/VEGF acts selectively on the vascular endothelium to enhance permeability, induce cell migration and division, and delay replicative senescence. To understand the changes in gene expression during endothelial senescence, we investigated genes that were differentially expressed in early vs. late passage (senescent) human dermal endothelial cells (HDMEC) using cDNA array hybridization. Early passage HDMEC cultured with or without VPF/VEGF overexpressed 9 and underexpressed 6 genes in comparison with their senescent counterparts. Thymosin beta-10 expression was modulated by VPF/VEGF and was strikingly down-regulated in senescent EC. The beta-thymosins are actin G-sequestering peptides that regulate actin dynamics and are overexpressed in neoplastic transformation. We have also identified senescent EC in the human aorta at sites overlying atherosclerotic plaques. These EC expressed senescence-associated neutral beta-galactosidase and, in contrast to adventitial microvessel endothelium, exhibited weak staining for thymosin beta-10. ISH performed on human malignant tumors revealed strong thymosin beta-10 expression in tumor blood vessels. This is the first report that Tbeta-10 expression is significantly reduced in senescent EC, that VPF/VEGF modulates thymosin beta-10 expression, and that EC can become senescent in vivo. The reduced expression of thymosin beta-10 may contribute to the senescent phenotype by reducing EC plasticity and thus impairing their response to migratory stimuli.  相似文献   

6.
7.
Ryu SW  Woo JH  Kim YH  Lee YS  Park JW  Bae YS 《FEBS letters》2006,580(3):988-994
  相似文献   

8.
《Epigenetics》2013,8(5):281-286
Demethylation of 5-methylcytosine in genomic DNA is believed to be one of the mechanisms underlying replicative life-span of mammalian cells. Both proliferation associated SNF2-like gene (PASG, also termed Lsh) and DNA methyltransferase 3B (Dnmt3b) knockout mice result in embryonic genomic hypomethylation and a replicative senescent phenotype. However, it is unclear whether gradual demethylation of DNA during somatic cell division is directly involved in senescence. In this study, we retrovirally transduced TIG-7 human fibroblasts with a shRNA against PASG and compared the rate of change in DNA methylation as well as the replicative life-span to control cells under low (3%) and ambient (20%) oxygen. Expression of PASG protein was decreased by approximately 80% compared to control cells following transduction of PASG shRNA gene. The rate of cell growth was the same in both control and PASG-suppressed cells. The rate of demethylation of DNA was significantly increased in PASG-suppressed cells as compared control cells. However, decreased PASG expression did not shorten the replicative life-span of TIG-7 cells. Culture under low oxygen extended the life-span of TIG-7 cells but did not alter the rate of DNA demethylation. While knockout of PASG during development results in genomic hypomethylation and premature senescence, our results show that while down-regulation of PASG expression in a somatic cell also leads to DNA hypomethylation, there is no associated senescent phenotype. These results suggest differences in cellular consequences of hypomethylation mediated by PASG during development compared to that in somatic cells.  相似文献   

9.
Reduced replicative capacity is a consistent characteristic of cells derived from patients with Werner syndrome. This premature senescence is phenotypically similar to replicative senescence observed in normal cell strains and includes altered cell morphology and gene expression patterns. Telomeres shorten with in vitro passaging of both WRN and normal cell strains; however, the rate of shortening has been reported to be faster in WRN cell strains, and the length of telomeres in senescent WRN cells appears to be longer than that observed in normal strains, leading to the suggestion that senescence in WRN cell strains may not be exclusively associated with telomere effects. We report here that the telomere restriction fragment length in senescent WRN fibroblasts cultures is within the size range observed for normal fibroblasts strains and that the expression of a telomerase transgene in WRN cell strains results in lengthened telomeres and replicative immortalization, thus indicating that telomere effects are the predominant trigger of premature senescence in WRN cells. Microarray analyses showed that mRNA expression patterns induced in senescent WRN cells appeared similar to those in normal strains and that hTERT expression could prevent the induction of most of these genes. However, substantial differences in expression were seen in comparisons of early-passage and telomerase-immortalized derivative lines, indicating that telomerase expression does not prevent the phenotypic drift, or destabilized genotype, resulting from the WRN defect.  相似文献   

10.
Microarray analysis of replicative senescence.   总被引:33,自引:0,他引:33  
BACKGROUND: Limited replicative capacity is a defining characteristic of most normal human cells and culminates in senescence, an arrested state in which cells remain viable but display an altered pattern of gene and protein expression. To survey widely the alterations in gene expression, we have developed a DNA microarray analysis system that contains genes previously reported to be involved in aging, as well as those involved in many of the major biochemical signaling pathways. RESULTS: Senescence-associated gene expression was assessed in three cell types: dermal fibroblasts, retinal pigment epithelial cells, and vascular endothelial cells. Fibroblasts demonstrated a strong inflammatory-type response, but shared limited overlap in senescent gene expression patterns with the other two cell types. The characteristics of the senescence response were highly cell-type specific. A comparison of early- and late-passage cells stimulated with serum showed specific deficits in the early and mid G1 response of senescent cells. Several genes that are constitutively overexpressed in senescent fibroblasts are regulated during the cell cycle in early-passage cells, suggesting that senescent cells are locked in an activated state that mimics the early remodeling phase of wound repair. CONCLUSIONS: Replicative senescence triggers mRNA expression patterns that vary widely and cell lineage strongly influences these patterns. In fibroblasts, the senescent state mimics inflammatory wound repair processes and, as such, senescent cells may contribute to chronic wound pathologies.  相似文献   

11.
12.
It is known that replicative senescence of endothelium in vivo contributes at least partially to age-related vascular disorders such as arteriosclerosis. However, the genes involved in this process remain to be identified. In this study, we employed a proteomics-based approach to identify candidate genes using in vitro cultured human umbilical vein endothelial cells (HUVECs) as an experimental model for replicative senescence. By comparing protein spots from young and senescent HUVECs using two-dimensional electrophoresis, we identified three up-regulated proteins and five down-regulated proteins in senescent HUVECs as compared to young HUVECs, whose alteration was not observed during replicative senescence of primary human fibroblasts. Consistent results were obtained in Western blotting analysis using specific antibodies raised against some of these proteins, whereas there were no significant changes in the mRNA levels of these genes during senescence of HUVECs. Among them, cathepsin B, a protease participating in both intracellular proteolysis and extracellular matrix remodeling was observed to be dramatically up-regulated in senescent HUVECs and whose activity is known to be up-regulated in atherosclerotic lesions with senescence-associated phenotypes in vivo. Additional proteins, including cytoskeletal proteins and proteins involved in the processes of synthesis, turnover and modification of protein, were identified, whose function in endothelium was previously unsuspected. These proteins identified by a proteomics-based approach using cultured HUVECs may be involved not only in replicative senescence but also in functional alterations in vascular endothelial cells with senescence-associated phenotypes and may serve as molecular markers for these processes.  相似文献   

13.
14.
Normal human cells have a limited replicative potential and inevitably reach replicative senescence in culture. Replicatively senescent cells show multiple molecular changes, some of which are related to the irreversible growth arrest in culture, whereas others resemble the changes occurring during the process of aging in vivo. Telomeres shorten as a result of cell replication and are thought to serve as a replicometer for senescence. Recent studies show that young cells can be induced to develop features of senescence prematurely by damaging agents, chromatin remodeling, and overexpression of ras or the E2F1 gene. Accelerated telomere shortening is thought to be a mechanism of premature senescence in some models. In this work, we test whether the acquisition of a senescent phenotype after mild-dose hydrogen peroxide (H(2)O(2)) exposure requires telomere shortening. Treating young HDFs with 150 microM H(2)O(2) once or 75 microM H(2)O(2) twice in 2 weeks causes long-term growth arrest, an enlarged morphology, activation of senescence-associated beta-galactosidase, and elevated expression of collagenase and clusterin mRNAs. No significant telomere shortening was observed with H(2)O(2) at doses ranging from 50 to 200 microM. Weekly treatment with 75 microM H(2)O(2) also failed to induce significant telomere shortening. Failure of telomere shortening correlated with an inability to elevate p16 protein or mRNA in H(2)O(2)-treated cells. In contrast, p21 mRNA was elevated over 40-fold and remained at this level for at least 2 weeks after a pulse treatment of H(2)O(2). The role of cell cycle checkpoints centered on p21 in premature senescence induced by H(2)O(2) is discussed here.  相似文献   

15.
The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.  相似文献   

16.

Background

As a chronic antigenic stressor human Cytomegalovirus (CMV) contributes substantially to age-related alterations of the immune system. Even though monocytes have the greatest propensity for CMV-infection and seem to be an important host for the virus during latency, fibroblasts are also discussed to be target cells of CMV in vivo. However, little is known so far about general immunoregulatory properties of CMV in fibroblasts. We therefore investigated the immunoregulatory effects of CMV-infection in human lung fibroblasts and the impact on replicative senescence.

Findings

We observed that CMV-infection led to the induction of several immunoregulatory host cell genes associated with the innate and adaptive immune system. These were genes of different function such as genes regulating apoptosis, cytokines/chemokines and genes that are responsible for the detection of pathogens. Some of the genes upregulated following CMV-infection are also upregulated during cellular senescence, indicating that CMV causes an immunological phenotype in fibroblasts, which is partially reminiscent of replicative senescent cells.

Conclusion

In summary our results demonstrate that CMV not only affects the T cell pool but also induces inflammatory processes in human fibroblasts.  相似文献   

17.
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening–induced replicative senescence is dependent on the ATM‐p53‐p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53‐responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti‐proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum‐dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late‐passage cells, and ectopic Pin1 expression rescues cells from BTG2‐induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts.  相似文献   

18.
Zhang W  Ji W  Yang J  Yang L  Chen W  Zhuang Z 《Life sciences》2008,83(13-14):475-480
DNA methylation is considered to play an essential role in cellular senescence. To uncover the mechanism underlying cellular senescence, we established the model of premature senescence induced by hydrogen peroxide (H(2)O(2)) in human embryonic lung fibroblasts and investigated the changes of genome methylation, DNA methyltransferases (DNMTs) and DNA-binding domain proteins (MBDs) in comparison with those observed during normal replicative senescence. We found that premature senescence triggered by H(2)O(2) exhibited distinct morphological characteristics and proliferative capacity which were similar to those of replicative senescence. The genome methylation level decreased gradually during the premature as well as replicative senescence, which was associated with the reduction in the expression of DNMT1, reflecting global hypomethylation as a distinct feature of senescent cells. The levels of DNMT3b and methyl-CpG binding protein 2 (MeCP2) increased in both mid-aged and replicative senescent cells, while DNMT3a and MBD2 were upregulated in the mid-aged cells. Only DNMT3b was elevated in the cells in the premature senescence persistence status. Additionally, the expression for DNMTs, MBD2 and MeCP2 was increased rapidly upon H(2)O(2) treatment. These results indicate that H(2)O(2)-induced premature senescence share some features of replicative senescence, such as basic biological characteristics and global hypomethylation while there are slight differences in the profile of methylation-associated enzyme expression. Oxidative damage may hence be a causative factor in epigenetic alteration partly responsible for cellular senescence.  相似文献   

19.
20.
The INhibitor of Growth (ING) proteins act as type II tumor suppressors and epigenetic regulators, being stoichiometric members of histone acetyltransferase and histone deacetylase complexes. Expression of the alternatively spliced ING1a tumor suppressor increases >10-fold during replicative senescence. ING1a overexpression inhibits growth; induces a large flattened cell morphology and the expression of senescence-associated β-galactosidase; increases Rb, p16, and cyclin D1 levels; and results in the accumulation of senescence-associated heterochromatic foci. Here we identify ING1a-regulated genes and find that ING1a induces the expression of a disproportionate number of genes whose products encode proteins involved in endocytosis. Intersectin 2 (ITSN2) is most affected by ING1a, being rapidly induced >25-fold. Overexpression of ITSN2 independently induces expression of the p16 and p57KIP2 cyclin-dependent kinase inhibitors, which act to block Rb inactivation, acting as downstream effectors of ING1a. ITSN2 is also induced in normally senescing cells, consistent with elevated levels of ING1a inducing ITSN2 as part of a normal senescence program. Inhibition of endocytosis or altering the stoichiometry of endosome components such as Rab family members similarly induces senescence. Knockdown of ITSN2 also blocks the ability of ING1a to induce a senescent phenotype, confirming that ITSN2 is a major transducer of ING1a-induced senescence signaling. These data identify a pathway by which ING1a induces senescence and indicate that altered endocytosis activates the Rb pathway, subsequently effecting a senescent phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号