首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA via a concerted mechanism of DNA strand cleavage and religation. Top1p is the cellular target of the anti-cancer drug camptothecin (CPT), which reversibly stabilizes a covalent enzyme-DNA intermediate. Top1p clamps around duplex DNA, wherein the core and C-terminal domains are connected by extended alpha-helices (linker domain), which position the active site Tyr of the C-terminal domain within the catalytic pocket. The physical connection of the linker with the Top1p clamp as well as linker flexibility affect enzyme sensitivity to CPT. Crystallographic data reveal that a conserved Gly residue (located at the juncture between the linker and C-terminal domains) is at one end of a short alpha-helix, which extends to the active site Tyr covalently linked to the DNA. In the presence of drug, the linker is rigid and this alpha-helix extends to include Gly and the preceding Leu. We report that mutation of this conserved Gly in yeast Top1p alters enzyme sensitivity to CPT. Mutating Gly to Asp, Glu, Asn, Gln, Leu, or Ala enhanced enzyme CPT sensitivity, with the acidic residues inducing the greatest increase in drug sensitivity in vivo and in vitro. By contrast, Val or Phe substituents rendered the enzyme CPT-resistant. Mutation-induced alterations in enzyme architecture preceding the active site Tyr suggest these structural transitions modulate enzyme sensitivity to CPT, while enhancing the rate of DNA cleavage. We postulate that this conserved Gly residue provides a flexible hinge within the Top1p catalytic pocket to facilitate linker dynamics and the structural alterations that accompany drug binding of the covalent enzyme-DNA intermediate.  相似文献   

3.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology and is the cellular target of camptothecin. Recent reports of enzyme structure highlight the importance of conserved amino acids N-terminal to the active site tyrosine and the involvement of Asn-726 in mediating Top1p sensitivity to camptothecin. To investigate the contribution of this residue to enzyme catalysis, we evaluated the effect of substituting His, Asp, or Ser for Asn-726 on yeast Top1p. Top1N726S and Top1N726D mutant proteins were resistant to camptothecin, although the Ser mutant was distinguished by a lack of detectable changes in activity. Thus, a basic residue immediately N-terminal to the active site tyrosine is required for camptothecin cytotoxicity. However, replacing Asn-726 with Asp or His interfered with distinct aspects of the catalytic cycle, resulting in cell lethality. In contrast to camptothecin, which inhibits enzyme-catalyzed religation of DNA, the His substituent enhanced the rate of DNA scission, whereas the Asp mutation diminished the enzyme binding of DNA. Yet, these effects on enzyme catalysis were not mutually exclusive as the His mutant was hypersensitive to camptothecin. These results suggest distinct mechanisms of poisoning DNA topoisomerase I may be explored in the development of antitumor agents capable of targeting different aspects of the Top1p catalytic cycle.  相似文献   

4.
5.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of camptothecin (CPT). Mutation of conserved residues in close proximity to the active site tyrosine (Tyr(727) of yeast Top1p) alters the DNA cleavage religation equilibrium, inducing drug-independent cell lethality. Previous studies indicates that yeast Top1T722Ap and Top1N726Hp cytotoxicity results from elevated levels of covalent enzyme-DNA intermediates. Here we show that Top1T722Ap acts as a CPT mimetic by exhibiting reduced rates of DNA religation, whereas increased Top1N726Hp.DNA complexes result from elevated DNA binding and cleavage. We also report that the combination of the T722A and N726H mutations in a single protein potentiates the cytotoxic action of the enzyme beyond that induced by co-expression of the single mutants. Moreover, the addition of CPT to cells expressing the double top1T722A/N726H mutant did not enhance cell lethality. Thus, independent alterations in DNA cleavage and religation contribute to the lethal phenotype. The formation of distinct cytotoxic lesions was also evidenced by the different responses induced by low levels of these self-poisoning enzymes in isogenic strains defective for the Rad9 DNA damage checkpoint, processive DNA replication, or ubiquitin-mediated proteolysis. Substitution of Asn(726) with Phe or Tyr also produces self-poisoning enzymes, implicating stacking interactions in the increased kinetics of DNA cleavage by Top1N726Hp and Top1N726Fp. In contrast, replacing the amide side chain of Asn(726) with Gln renders Top1N726Qp resistant to CPT, suggesting that the orientation of the amide within the active site is critical for effective CPT binding.  相似文献   

6.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of a covalent enzyme-DNA intermediate, which is reversibly stabilized by the anticancer agent camptothecin (CPT). Crystallographic studies of the 70-kDa C terminus of human Top1p bound to duplex DNA describe a monomeric protein clamp circumscribing the DNA helix. The structures, which lack the N-terminal domain, comprise the conserved clamp, an extended linker domain, and the conserved C-terminal active site Tyr domain. CPT bound to the covalent Top1p-DNA complex limits linker flexibility, allowing structural determination of this domain. We previously reported that mutation of Ala(653) to Pro in the linker increases the rate of enzyme-catalyzed DNA religation, thereby rendering Top1A653Pp resistant to CPT (Fiorani, P., Bruselles, A., Falconi, M., Chillemi, G., Desideri, A., and Benedetti P. (2003) J. Biol. Chem. 278, 43268-43275). Molecular dynamics studies suggested mutation-induced increases in linker flexibility alter Top1p catalyzed DNA religation. To address the functional consequences of linker flexibility on enzyme catalysis and drug sensitivity, we investigated the interactions of the A653P linker mutation with a self-poisoning T718A mutation within the active site of Top1p. The A653P mutation suppressed the lethal phenotype of Top1T718Ap in yeast, yet did not restore enzyme sensitivity to CPT. However, the specific activity of the double mutant was decreased in vivo and in vitro, consistent with a decrease in DNA binding. These findings support a model where changes in the flexibility or orientation of the linker alter the geometry of the active site and thereby the kinetics of DNA cleavage/religation catalyzed by Top1p.  相似文献   

7.
DNA topoisomerase I is a major cellular target for antitumor indolocarbazole derivatives (IND) such as the antibiotic rebeccamycin and the synthetic analogue NB-506 which is undergoing phase I clinical trials. We have investigated the mechanism of topoisomerase I inhibition by a rebeccamycin analogue, R-3, using the wild-type human topoisomerase I and a well-characterized recombinant enzyme, F361S. The catalytic activity of this mutant remains fully intact, but the enzyme is resistant to inhibition by camptothecin (CPT). Here we show that the mutated enzyme is cross-resistant to the rebeccamycin analogue. Despite their profound structural differences, CPT and R-3 interfere similarly with the activity of the wild-type and mutant topoisomerase I enzymes, and the drug-induced cleavable complexes are equally sensitive to the NaCl concentration. CPT and IND likely recognize identical structural elements of the topoisomerase I-DNA covalent complex; however, differences do exist in terms of sequence-specificity of topoisomerase I-mediated DNA cleavage. For the first time, a molecular model showing that CPT and IND share common steric and electronic features is proposed. The model helps to identify a specific pharmacophore for topoisomerase I inhibitors.  相似文献   

8.
DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of an enzyme-DNA covalent complex that is reversibly stabilized by the antitumor drug, camptothecin (CPT). During S-phase, collisions with replication forks convert these complexes into cytotoxic DNA lesions that trigger cell cycle arrest and cell death. To investigate cellular responses to CPT-induced DNA damage, a yeast genetic screen identified conditional tah mutants with enhanced sensitivity to self-poisoning DNA topoisomerase I mutant (Top1T722Ap), which mimics the action of CPT. Mutant alleles of three genes, DOA4, SLA1 and SLA2, were recovered. A nonsense mutation in DOA4 eliminated the catalytic residues of the Doa4p deubiquitinating enzyme, yet retained the rhodanase domain. At 36 degrees C, this doa4-10 mutant exhibited increased sensitivity to CPT, osmotic stress, and hydroxyurea, and a reversible petite phenotype. However, the accumulation of pre-vacuolar class E vesicles that was observed in doa4Delta cells was not detected in the doa4-10 mutant. Mutations in SLA1 or SLA2, which alter actin cytoskeleton architecture, induced a conditional synthetic lethal phenotype in combination with doa4-10 in the absence of DNA damage. Here actin cytoskeleton defects coincided with the enhanced fragility of large-budded cells. In contrast, the enhanced sensitivity of doa4-10 mutant cells to Top1T722Ap was unrelated to alterations in endocytosis and was selectively suppressed by increased dosage of the ribonucleotide reductase inhibitor Sml1p. Additional studies suggest a role for Doa4p in the Rad9p checkpoint response to Top1p poisons. These findings indicate a functional link between ubiquitin-mediated proteolysis and cellular resistance to CPT-induced DNA damage.  相似文献   

9.
10.
Human topoisomerase I-B (Top1) efficiently relaxes DNA supercoils during basic cellular processes, and can be transformed into a DNA-damaging agent by antitumour drugs, enzyme mutations and DNA lesions. Here, we describe Gal4-Top1 chimeric proteins (GalTop) with an N-terminal truncation of Top1, and mutations of the Gal4 Zn-cluster and/or Top1 domains that impair their respective DNA-binding activities. Expression levels of chimeras were similar in yeast cells, however, GalTop conferred an increased CPT sensitivity to RAD52- yeast cells as compared to a GalTop with mutations of the Gal4 domain, showing that a functional Gal4 domain can alter in vivo functions of Top1. In vitro enzyme activity was tested with a DNA relaxation assay using negatively supercoiled plasmids with 0 to 5 Gal4 consensus motifs. Only GalTop with a functional Gal4 domain could direct DNA relaxation activity of Top1 specifically to DNA molecules containing Gal4 motifs. By using a substrate competition assay, we could demonstrate that the Gal4-anchored Top1 remains functional and efficiently relax DNA substrates in cis. The enhanced CPT sensitivity of GalTop in yeast cells may then be due to alterations of the chromatin-binding activity of Top1. The GalTop chimeras may indeed mimic a normal mechanism by which Top1 is recruited to chromatin sites in living cells. Such hybrid Top1s may be helpful in further dissecting enzyme functions, and constitute a prototype of a site-specific DNA cutter endowed with high cell lethality.  相似文献   

11.
12.
DNA topoisomerase II (Top2) is an essential nuclear enzyme and a target of very effective anticancer drugs including anthracycline antibiotics. Even though several aspects of drug activity against Top2 are understood, the drug receptor site is not yet known. Several Top2 mutants have altered drug sensitivity and have provided information of structural features determining drug action. Here, we have investigated the sensitivity to three closely related anthracycline derivatives of yeast Top2 bearing mutations in the CAP-like domain and integrated the findings with computer models of ternary drug-enzyme-DNA complexes. The results suggest a model for the anthracycline receptor wherein a drug molecule has specific interactions with the cleaved DNA as well as amino acid residues of the CAP-like domain of an enzyme monomer. The drug molecule is intercalated into DNA at the site of cleavage, and interestingly, drug-enzyme contacts involve one side of the four-ring chromophore and the side chain of the anthracycline molecule. The findings may explain several established structure-activity relationships of antitumor anthracyclines and may thus provide a framework for further developments of effective Top2 poisons.  相似文献   

13.
The ABC half-transporter, ABCG2, is known to confer resistance to chemotherapeutic agents including indolocarbazole derivatives. MCF7 cells were introduced by either wild type ABCG2 (ABCG2-482R) or mutant ABCG2 (-482T), whose amino acid at position 482 is substituted to threonine from arginine, and their cross-resistance pattern was analyzed. Although this amino acid substitution seems to affect cross-resistance patterns, both 482T- and 482R-transfectants showed strong resistance to indolocarbazoles, confirming that ABCG2 confers resistance to them. For further characterization of ABCG2-mediated transport, we investigated indolocarbazole compound A (Fig. 1) excretion in cell-free system. Compound A was actively transported in membrane vesicles prepared from one of the 482T- transfectants and its uptake was supported by hydrolysis of various nucleoside triphosphates. This transport was inhibited completely by the other indolocarbazole compound, but not by mitoxantrone, implying that the binding site of mitoxantrone or the transport mechanisms for mitoxantrone is different from those of indolocarbazoles. These results showed that ABCG2 confers resistance to indolocarbazoles by transporting them in an energy-dependent manner.  相似文献   

14.
Human DNA topoisomerase I (hTop1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of the antitumor drug camptothecin (CPT). The X-ray crystal structure of the enzyme covalently joined to DNA and bound to the CPT analog Topotecan suggests that there are two classes of mutations that can produce a CPT-resistant enzyme. The first class includes changes in residues that directly interact with the drug, whereas a second class alters interactions with the DNA and thereby destabilizes the drug binding site. The Thr729Ala, that is part of a hydrophobic pocket in the enzyme C-terminal domain, belongs to a third group of mutations that confer CPT resistance, but do not interact directly with the drug or the DNA. To understand the contribution of this residue in drug resistance, we have studied the effect on hTop1p catalysis and CPT sensitivity of four different substitutions in the Thr729 position (Thr729Ala, Thr729Glu, Thr729Lys and Thr729Pro). Tht729Glu and Thr729Lys mutants show severe CPT resistance and furthermore, Thr729Glu shows a remarkable defect in DNA binding. We postulate that the maintenance of the hydrophobic pocket integrity, where Thr729 is positioned, is crucial for drug sensitivity and DNA binding.  相似文献   

15.
Topoisomerase I (Top1) removes DNA torsional stress by nicking and resealing one strand of DNA, and is essential in higher eukaryotes. The enzyme is frequently overproduced in tumors and is the sole target of the chemotherapeutic drug camptothecin (CPT) and its clinical derivatives. CPT stabilizes the covalent Top1-DNA cleavage intermediate, which leads to toxic double-strand breaks (DSBs) when encountered by a replication fork. In the current study, we examined genetic instability associated with CPT treatment or with Top1 overexpression in the yeast Saccharomyces cerevisiae. Two types of instability were monitored: Top1-dependent deletions in haploid strains, which do not require processing into a DSB, and instability at the repetitive ribosomal DNA (rDNA) locus in diploid strains, which reflects DSB formation. Three 2-bp deletion hotspots were examined and mutations at each were elevated either when a wild-type strain was treated with CPT or when TOP1 was overexpressed, with the mutation frequency correlating with the level of TOP1 overexpression. Under both conditions, deletions at novel positions were enriched. rDNA stability was examined by measuring loss-of-heterozygosity and as was observed previously upon CPT treatment of a wild-type strain, Top1 overexpression destabilized rDNA. We conclude that too much, as well as too little of Top1 is detrimental to eukaryotic genomes, and that CPT has destabilizing effects that extend beyond those associated with DSB formation.  相似文献   

16.
PRMT7 belongs to the protein arginine methyl-transferases family. We show that downregulation of PRMT7alpha and beta isoforms in DC-3F hamster cells was associated with increased sensitivity to the Top1 inhibitor camptothecin (CPT). This effect was not due to a change in Top1 contents or catalytic activity, or to a difference in the reversal of DNA breaks. Overexpression of PRMT7alpha and beta in DC-3F cells had no effect on CPT sensitivity, whereas it conferred a resistance to DC-3F/9-OH-E cells for which both isoforms are reduced by two- to three-fold as compared to DC-3F parental cells. Finally, downregulation of the human PRMT7 could also sensitize HeLa cells to CPT, suggesting that it could be used as a target to potentiate CPT derivatives.  相似文献   

17.
Nucleolin functions in ribosome biogenesis and contains an acidic N terminus that binds nuclear localization sequences. In previous work we showed that human nucleolin associates with the N-terminal region of human topoisomerase I (Top1). We have now mapped the topoisomerase I interaction domain of nucleolin to the N-terminal 225 amino acids. We also show that the Saccharomyces cerevisiae nucleolin ortholog, Nsr1p, physically interacts with yeast topoisomerase I, yTop1p. Studies of isogenic NSR1(+) and Deltansr1 strains indicate that NSR1 is important in determining the cellular localization of yTop1p. Moreover, deletion of NSR1 reduces sensitivity to camptothecin, an antineoplastic topoisomerase I inhibitor. By contrast, Deltansr1 cells are hypersensitive to the topoisomerase II-targeting drug amsacrine. These findings indicate that nucleolin/Nsr1 is involved in the cellular localization of Top1 and that this localization may be important in determining sensitivity to drugs that target topoisomerases.  相似文献   

18.
Topoisomerase I is an ubiquitous DNA cleaving enzyme and an important therapeutic target in cancer chemotherapy for the camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin and its synthetic derivatives, which stabilize the cleaved DNA-topoisomerase I complex. The covalent linkage of a triple helixforming oligonucleotide to camptothecin or to the indolocarbazole derivative R-6 directs DNA cleavage by topoisomerase I to specific sequences. Sequence-specific recognition of DNA is achieved by the triple helix-forming oligonucleotide, which binds to the major groove of double-helical DNA and positions the drug at a specific site. The efficacy of topoisomerase I-induced DNA cleavage mediated by the rebeccamycin-conjugate and the camptothecin-conjugate was compared and related to the intrinsic potency of the isolated drugs.  相似文献   

19.
Catalysis of ATP hydrolysis by two NH(2)-terminal fragments of yeast DNA topoisomerase II was studied in the absence and presence of DNA, and in the absence and presence of inhibitor ICRF-193. The results indicate that purified Top2-(1-409), a fragment containing the NH(2)-terminal 409 amino acids of the yeast enzyme, is predominantly monomeric, with a low level of ATPase owing to weak association of two monomers to form a catalytically active dimer. The ATPase activity of Top2-(1-409) is independent of DNA in a buffer containing 100 mM NaCl, in which intact yeast DNA topoisomerase II exhibits robust DNA-dependent ATPase and DNA transport activities. Purified Top2-(1-660), a fragment containing the NH(2)-terminal 660 amino acid of the yeast enzyme, appears to be dimeric in the absence or presence of DNA, and the ATPase activity of the protein is significantly stimulated by DNA. These results are consistent with a model in which binding of an intact DNA topoisomerase II to DNA places the various subfragments of the enzyme in a way that makes the intramolecular dimerization of the ATPase domains more favorable. We believe that this alignment of subfragments is mainly achieved through the binding of the enzyme to the DNA segment within which the enzyme makes transient breaks. The ATPase activity of Top2-(1-409) is inhibited by ICRF-193, suggesting that the bisdioxopiperazine class of DNA topoisomerase II inhibitors directly interacts with the paired ATPase domains of the enzyme.  相似文献   

20.
Leishmania donovani, the causative organism of visceral leishmaniasis, contains a unique heterodimeric DNA topoisomerase IB (LdTop1). The catalytically active enzyme consists of a large subunit (LdTop1L), which contains the non-conserved N-terminal end and a phylogenetically conserved core domain, and of a small subunit (LdTop1S) which harbours the C-terminal region with a characteristic tyrosine residue in the active site. Heterologous co-expression of LdTop1L and LdTop1S in a topoisomerase I deficient yeast strain, reconstitutes a fully functional enzyme which can be used for structural studies. The role played by the non-conserved N-terminal extension of LdTop1S in both relaxation activity and CPT sensitivity of LdTop1 has been examined co-expressing the full-length LdTop1L with several deletions of LdTop1S lacking growing sequences of the N-terminal end. The sequential deletion study shows that the first 174 amino acids of LdTop1S are dispensable in terms of relaxation activity and DNA cleavage. It is also described that the trapping of the covalent complex between LdTop1 and DNA by CPT requires a pentapeptide between amino acid residues 175 and 179 of LdTop1S. Our results suggest the crucial role played by the N-terminal extension of the small subunit of DNA topoisomerase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号