首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokines and their receptors have been studied in several solid tumor models as mediators of inflammation. In turn, inflammation has been implicated in the promotion and progression of tumors, and as such, chemokines have been proposed as novel molecular targets for chemotherapy. While the expression of these molecules has been described in tumor cells, endothelial cells, macrophages and neutrophils, less attention has been paid to the expression profile of these molecules by T lymphocytes in the periphery or infiltrating the tumor. Using the D1-DMBA-3 murine mammary adenocarcinoma model, we aimed to better characterize the differential expression of chemokines and/or their receptors in the host and in the tumor microenvironment, and specifically, in the T cells of tumor-bearing mice compared to normal control animals. We found that T lymphocytes from tumor-bearing mice express the pro-inflammatory chemokines, CCL2, CCL5 and CXCL2, as well as the chemokine receptors, CCR1, CCR2, CCR3 and CXCR2.  相似文献   

2.
Chronic inflammation is known to contribute to tumor initiation and cancer progression. In breast tissue, the core circadian gene Period (PER)2 plays a critical role in mammary gland development and possesses tumor suppressor function. Interleukin (IL)-6 and C-C motif chemokine ligand (CCL) 2 are among the most abundant cytokines in the inflammatory microenvironment. We found that acute stimulation by IL-6/CCL2 reduced PER2 expression in non-tumorigenic breast epithelial cells. Longer term exposure to IL-6/CCL2 suppressed PER2 to an even lower level. IL-6 activated STAT3/NFκB p50 signaling to recruit HDAC1 to the PER2 promoter. CCL2 activated the PI3K/AKT pathway to promote ELK-1 cytoplasm-to-nucleus translocation, recruit HDAC1 to the proximal PER2 promoter and facilitate DNMT3-EZH2-PER2 promoter association. Ectopic expression of PER2 inhibited IL-6 or CCL2 induced mammosphere forming ability and reduced sphere size indicating that PER2 repression in breast epithelial cells can be crucial to activate tumorigenesis in an inflammatory microenvironment. The diminished expression of PER2 can be observed over a time scale of hours to weeks following IL-6/CCL2 stimulation suggesting that PER2 suppression occurs in the early stage of the interaction between an inflammatory microenvironment and normal breast epithelial cells. These data show new mechanisms by which mammary cells interact with a cancerous microenvironment and provide additional evidence that PER2 expression contributes to breast tumorigenesis.  相似文献   

3.
Chemokines are essential mediators of immune cell trafficking. In a tumor microenvironment context, chemotactic cytokines are known to regulate the migration, positioning and interaction of different cell subsets with both anti- and pro-tumor functions. Additionally, chemokines have critical roles regarding non-immune cells, highlighting their importance in tumor growth and progression.CCL18 is a primate-specific chemokine produced by macrophages and dendritic cells. This chemokine presents both constitutive and inducible expression. It is mainly associated with a tolerogenic response and involved in maintaining homeostasis of the immune system under physiological conditions. Recently, CCL18 has been noticed as an important component of the complex chemokine system involved in the biology of tumors. This chemokine induces T regulatory cell differentiation and recruitment to the tumor milieu, with subsequent induction of a pro-tumor (M2-like) macrophage phenotype. CCL18 is also directly involved in cancer cell-invasion, migration, epithelial-to-mesenchymal transition and angiogenesis stimulation, pinpointing an important role in the promotion of cancer progression. Interestingly, this chemokine is highly expressed in tumor tissues, particularly at the invasive front of more advanced stages (e.g. colorectal cancer), and high levels are detected in the serum of patients, correlating with poor prognosis.Despite the promising role of CCL18 as a biomarker and/or therapeutic target to hamper disease progression, its pleiotropic functions in a context of cancer are still poorly explored. The scarce knowledge concerning the receptors for this chemokine, together with the insufficient insight on the downstream signaling pathways, have impaired the selection of this molecule as an immediate target for translational research.In this Review, we will discuss recent findings concerning the role of CCL18 in cancer, integrate recently disclosed molecular mechanisms and compile data from current clinical studies.  相似文献   

4.
The chemokine ligand CCL2 and its receptor CCR2 are implicated in the initiation and progression of various cancers. CCL2 can activate tumour cell growth and proliferation through a variety of mechanisms. By interacting with CCR2, CCL2 promotes cancer cell migration and recruits immunosuppressive cells to the tumour microenvironment, favouring cancer development. Over the last several decades, a series of studies have been conducted to explore the CCL2‐CCR2 signalling axis function in malignancies. Therapeutic strategies targeting the CCL2‐ CCR2 axis have also shown promising effects, enriching our approaches for fighting against cancer. In this review, we summarize the role of the CCL2‐CCR2 signalling axis in tumorigenesis and highlight recent studies on CCL2‐CCR2 targeted therapy, focusing on preclinical studies and clinical trials.

The chemokine ligand CCL2 and its receptor CCR2 are implicated in the initiation and progression of various cancers. The CCL2‐CCR2 signalling axis plays a critical role in the promotion of pathological angiogenesis, the survival and invasion of tumour cells, and the recruitment of immune inhibitory cells. Therefore, CCL2 and CCR2 enable us to explore the sophisticated mechanisms underlying cancer development and provide potential options for treating malignant tumours.  相似文献   

5.
Despite the immunogenicity of glioblastoma multiforme (GBM), immune-mediated eradication of these tumors remains deficient. Regulatory T cells (Tregs) in the blood and within the tumor microenvironment of GBM patients are known to contribute to their dismal immune responses. Here, we determined which chemokine secreted by gliomas can preferentially induce Treg recruitment and migration. In the malignant human glioma cell lines D-54, U-87, U-251, and LN-229, the chemokines CCL22 and CCL2 were detected by intracellular cytokine analysis. Furthermore, tumor cells from eight patients with GBM had a similar chemokine expression profile. However, only CCL2 was detected by enzyme-linked immunosorbent assay, indicating that CCL2 may be the principal chemokine for Treg migration in GBM patients. Interestingly, the Tregs from GBM patients had significantly higher expression levels of the CCL2 receptor CCR4 than did Tregs from healthy controls. Glioma supernatants and the recombinant human chemokines CCL2 and CCL22 induced Treg migration and were blocked by antibodies to the chemokine receptors. Production of CCL2 by glioma cells could also be mitigated by the chemotherapeutic agents temozolomide and carmustine [3-bis (2-chloroethyl)-1-nitrosourea]. Our results indicate that gliomas augment immunosuppression by selective chemokine-mediated recruitment of Tregs into the tumor microenvironment and that modulating this interaction with chemotherapy could facilitate the development of novel immunotherapeutics to malignant gliomas. Justin T. Jordan and Wei Sun are contributed equally to this work. An erratum to this article can be found at  相似文献   

6.
CCL2 and interleukin (IL)-6 are among the most prevalent cytokines in the tumor microenvironment, with expression generally correlating with tumor progression and metastasis. CCL2 and IL-6 induced expression of each other in CD11b+ cells isolated from human peripheral blood. It was demonstrated that both cytokines induce up-regulation of the antiapoptotic proteins cFLIPL (cellular caspase-8 (FLICE)-like inhibitory protein), Bcl-2, and Bcl-XL and inhibit the cleavage of caspase-8 and subsequent activation of the caspase-cascade, thus protecting cells from apoptosis under serum deprivation stress. Furthermore, both cytokines induced hyperactivation of autophagy in these cells. Upon CCL2 or IL-6 stimulation, CD11b+ cells demonstrated a significant increase in the mannose receptor (CD206) and the CD14+/CD206+ double-positive cells, suggesting a polarization of macrophages toward the CD206+ M2-type phenotype. Caspase-8 inhibitors mimicked the cytokine-induced up-regulation of autophagy and M2 polarization. Furthermore, E64D and leupeptin, which are able to function as inhibitors of autophagic degradation, reversed the effect of caspase-8 inhibitors in the M2-macrophage polarization, indicating a role of autophagy in this mechanism. Additionally, in patients with advanced castrate-resistant prostate cancer, metastatic lesions exhibited an increased CD14+/CD206+ double-positive cell population compared with normal tissues. Altogether, these findings suggest a role for CCL2 and IL-6 in the survival of myeloid monocytes recruited to the tumor microenvironment and their differentiation toward tumor-promoting M2-type macrophages via inhibition of caspase-8 cleavage and enhanced autophagy.  相似文献   

7.
Chemokines are small soluble molecules that play critical roles in wound healing, infection, and cancer progression. In particular, overexpression of the C-C motif chemokine ligand 2 (CCL2) in multiple cancer types correlates with poor patient prognosis. Animal studies have shown that CCL2 signals to macrophages and breast cancer cells to promote tumor growth, invasion, and metastasis, indicating that CCL2 is a promising therapeutic target. However, the effectiveness of human-specific neutralizing antibodies has not been fully evaluated. Furthermore, controversies remain on the use of neutralizing antibodies to target CCL2 and could be due to mode of drug delivery. Here, we investigated the effects of continuous delivery of human CCL2-neutralizing antibodies on breast cancer progression. Nude mice bearing MCF10CA1d breast tumor xenografts were implanted with osmotic pumps containing control IgG or anti-CCL2 and analyzed for CCL2 levels and tumor progression over 4 weeks. Despite inhibiting CCL2-induced migration in vitro, CCL2-neutralizing antibodies did not significantly affect tumor growth, invasion, macrophage recruitment, or tumor angiogenesis. CCL2 antibodies did not affect murine CCL2 levels but significantly increased human CCL2 levels in circulating blood and tumor interstitial fluid. CCL2-neutralizing antibodies reduced CCL2 levels in cultured cells short term at high concentrations. Enzyme-linked immunosorbent assay analysis of CCL2 in cultured fibroblasts and breast cancer cells revealed that the neutralizing antibodies sequestered CCL2 in the media. CCL2 levels were restored once the antibodies were removed. These studies reveal limitations in CCL2-neutralizing antibodies as a therapeutic agent, with important implications for translating CCL2 targeting to the clinic.  相似文献   

8.
Liu J  Zhang N  Li Q  Zhang W  Ke F  Leng Q  Wang H  Chen J  Wang H 《PloS one》2011,6(4):e19495

Background

Tumor-associated macrophages (TAMs) remodel the colorectal cancer (CRC) microenvironment. Yet, findings on the role of TAMs in CRC seem to be contradictory compared with other cancers. FoxP3+ regulatory T (Treg)-cells dominantly infiltrate CRC. However, the underlying molecular mechanism in which TAMs may contribute to the trafficking of Treg-cells to the tumor mass remains unknown.

Methodology/Principal Findings

CRC was either induced by N-methyl-N-nitrosourea (MNU) and H. pylori or established by subcutaneous injection of mouse colorectal tumor cell line (CMT93) in mice. CMT93 cells were co-cultured with primary macrophages in a transwell apparatus. Recruitment of FoxP3 green fluorescence protein positive (FoxP3GFP+) Treg-cells was assessed using the IVIS Imaging System or immunofluorescence staining. A role for macrophages in trafficking of Treg-cells and in the development of CRC was investigated in CD11b diphtheria toxin receptor (CD11b-DTR) transgenic C57BL/6J mice in which macrophages can be selectively depleted. Treg-cells remarkably infiltrated solid tumor, and predominantly expressed the homing chemokine receptor (CCR) 6 in the induced CRC model. Both CMT93 cancer cells and macrophages produced a large amount of CCL20, the sole ligand of CCR6 in vitro and in vivo. Injection of recombinant mouse CCL20 into tumor sites promoted its development with a marked recruitment of Treg-cells in the graft CRC model. Conditional macrophage ablation decreased CCL20 levels, blocked Treg-cell recruitment and inhibited tumor growth in CD11b-DTR mice grafted with CMT93.

Conclusions/Significance

TAMs recruit CCR6+ Treg-cells to tumor mass and promote its development via enhancing the production of CCL20 in a CRC mouse model.  相似文献   

9.
Recent data strongly support the idea that the orchestrated interaction between cancer and other cells in the tumor microenvironment is a vital component in the neoplastic process. Thus, tumor cells take advantage of the signaling molecules of the immune system to proliferate, survive, and invade other tissues. CCL2 (Chemokine (C-C motif) ligand 2, Monocyte chemoattractant protein-1 (MCP-1) has been demonstrated to play a significant role in prostate cancer neoplasia and invasion, and is highly expressed in the tumor microenvironment. We recently reported that CCL2 elicits a strong survival advantage in prostate cancer PC3 cells through PI3K/Akt-dependent regulation of autophagy via the mammalian target of rapamycin (mTOR) pathway and importantly, survivin upregulation is essential in this survival mechanism. Autophagy protects cells from nutrient depletion stress, but, paradoxically, excessive autophagy will result in cell death. How these life or death decisions are regulated remains unclear. Here we discuss the function of survivin in the control of autophagy and the interaction between CCL2, survivin and autophagy in the complex program of tumor progression.  相似文献   

10.
Accumulation of tumor‐associated macrophages (TAMs) associates with malignant progression in cancer. However, the mechanisms that drive the pro‐tumor functions of TAMs are not fully understood. ZEB1 is best known for driving an epithelial‐to‐mesenchymal transition (EMT) in cancer cells to promote tumor progression. However, a role for ZEB1 in macrophages and TAMs has not been studied. Here we describe that TAMs require ZEB1 for their tumor‐promoting and chemotherapy resistance functions in a mouse model of ovarian cancer. Only TAMs that expressed full levels of Zeb1 accelerated tumor growth. Mechanistically, ZEB1 expression in TAMs induced their polarization toward an F4/80low pro‐tumor phenotype, including direct activation of Ccr2. In turn, expression of ZEB1 by TAMs induced Ccl2, Cd74, and a mesenchymal/stem‐like phenotype in cancer cells. In human ovarian carcinomas, TAM infiltration and CCR2 expression correlated with ZEB1 in tumor cells, where along with CCL2 and CD74 determined poorer prognosis. Importantly, ZEB1 in TAMs was a factor of poorer survival in human ovarian carcinomas. These data establish ZEB1 as a key factor in the tumor microenvironment and for maintaining TAMs’ tumor‐promoting functions.  相似文献   

11.
CCL5 is a member of the CC chemokine family expressed in a wide array of immune and non-immune cells in response to stress signals. CCL5 expression correlates with advanced human breast cancer. However, its functional significance and mode of action have not been established. Here, we show that CCL5-deficient mice are resistant to highly aggressive, triple-negative mammary tumor growth. Hematopoietic CCL5 is dominant in this phenotype. The absence of hematopoietic CCL5 causes aberrant generation of CD11b+/Gr-1+, myeloid-derived suppressor cells (MDSCs) in the bone marrow in response to tumor growth by accumulating Ly6Chi and Ly6G+ MDSCs with impaired capacity to suppress cytotoxicity of CD8+ T cells. These properties of CCL5 are observed in both orthotopic and spontaneous mammary tumors. Antibody-mediated systemic blockade of CCL5 inhibits tumor progression and enhances the efficacy of therapeutic vaccination against non-immunogenic tumors. CCL5 also helps maintain the immunosuppressive capacity of human MDSCs. Our study uncovers a novel, chemokine-independent activity of the hematopoietically derived CCL5 that promotes mammary tumor progression via generating MDSCs in the bone marrow in cooperation with tumor-derived colony-stimulating factors. The study sheds considerable light on the interplay between the hematopoietic compartment and tumor niche. Because of the apparent dispensable nature of this molecule in normal physiology, CCL5 may represent an excellent therapeutic target in immunotherapy for breast cancer as well as a broad range of solid tumors that have significant amounts of MDSC infiltration.  相似文献   

12.
Tumor-associated chemokines, including CC chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2), are thought to play many roles in cancer progression. Here we demonstrate the novel finding that during growth of the D1-7,12-dimethylbenzanthracene-3 mammary tumor in BALB/c mice, there is a dramatic up-regulation of CCL2 in splenic T cells at both the mRNA and protein levels upon stimulation. Of particular relevance is the finding that tumor-infiltrating T cells also produce high levels of CCL2. While a variety of tumor cell lines have been found to produce CCL2, we found no detectable levels of CCL2 protein in supernatants of the cultured mammary tumor cells. Investigation of the mechanisms involved in CCL2 induction showed that treatment of splenic T cells with the tumor-derived factors GM-CSF and phosphatidyl serine (PS) resulted in increased CCL2 production. This increased production may be involved in the downregulation of IFN-gamma by the T cells of tumor-bearing mice previously reported in this model, as treatment of splenic T lymphocytes with CCL2 resulted in a decreased secretion of IFN-gamma by those cells.  相似文献   

13.
The CCL2 CCR2 axis is likely to contributes to the development and progression of cancer diseases by two major mechanisms; autocrine effect of CCL2 as a survival/growth factor for CCR2+ cancer cells and, the attraction of CCR2+ CX3CR1+tumor associated macrophages that in the absence of CCR2 hardly migrate. Thus far no in vivo system has been set up to differentiate the selective contribution of each of these features to cancer development. Here we employed a chimera animal model in which all non-malignant cells are CCR2−/−, but all cancer cells are CCR2+, combined with an adoptive transfer system of bone marrow (BM) CX3CR1+ cells from CCR2+ mice harboring a targeted replacement of the CX3CR1gene by an enhanced green fluorescent protein (EGFP) reporter gene (cx3cr1 gfp), together with the CD45.1 congene. Using this system we dissected the selective contribution of CX3CR1+CCR2+ cells, which comprise only about 7% of CD11b+ BM cells, to tumor development and angiogenesis. Showing that aside for their direct pro-angiogenic effect they are essential for the recruitment of other CD11b+ cells to the tumor site. We further show that the administration of CCR2-Ig, that selectively and specifically neutralize CCL2, to mice in which CCR2 is expressed only on tumor cells, further suppressed tumor development, implicating for the key role of this chemokine supporting tumor survival in an autocrine manner. This further emphasizes the important role of CCL2 as a target for therapy of cancer diseases.  相似文献   

14.
Angiopoietin 2 (ANGPT2) is a proangiogenic cytokine whose expression is often upregulated by endothelial cells in tumors. Expression of its receptor, TIE2, defines a highly proangiogenic subpopulation of myeloid cells in circulation and tumors called TIE2-expressing monocytes/macrophages (TEMs). Genetic depletion of TEMs markedly reduces tumor angiogenesis in various tumor models, emphasizing their essential role in driving tumor progression. Previously, we demonstrated that ANGPT2 augments the expression of various proangiogenic genes, the potent immunosuppressive cytokine, IL-10, and a chemokine for regulatory T cells (Tregs), CCL17 by TEMs in vitro. We now show that TEMs also express higher levels of IL-10 than TIE2(-) macrophages in tumors and that ANGPT2-stimulated release of IL-10 by TEMs suppresses T cell proliferation, increases the ratio of CD4(+) T cells to CD8(+) T cells, and promotes the expansion of CD4(+)CD25(high)FOXP3(+) Tregs. Furthermore, syngeneic murine tumors expressing high levels of ANGPT2 contained not only high numbers of TEMs but also increased numbers of Tregs, whereas genetic depletion of tumor TEMs resulted in a marked reduction in the frequency of Tregs in tumors. Taken together, our data suggest that ANGPT2-stimulated TEMs represent a novel, potent immunosuppressive force in tumors.  相似文献   

15.
BackgroundSinonasal squamous cell carcinoma (SSCC) and nasal inverted papilloma (NIP) represent the predominant type of malignant and benign tumors in sinonasal tract, respectively. CD4+CD25+Foxp3+ natural regulatory T (Treg) cells might play critical role(s) in the suppression of anti-tumor immune response and thus shed light on tumor progression from benign to malignant.ObjectiveThis study aimed to evaluate the frequency and suppressive capacity of Treg cells in SSCC compared to NIP and further to explore the underlying mechanisms.ResultsTumor-infiltrating Treg cells increased significantly from normal to NIP to SSCC (P ≤ 0.001 for normal vs. NIP and P = 0.004 for NIP vs. SSCC). Significantly elevated frequency and enhanced suppression capacity of circulating Treg cells in SSCC were detected compared to NIP and healthy controls, concomitant with Th1 decrease and Th2 increase. Apparently increased CCL22 attracted CCR4-expressing Treg cells to tumor microenvironment in SSCC, compared to NIP. SSCC produced significantly more TGF-β than NIP and thus possessed greater potential for Treg cell induction.ConclusionFrequency and suppressive capacity of Treg cells enhanced with progression of malignancy from NIP to SSCC. Circulating Treg cells were recruited to tumor tissue via CCR4/CCL22 signalling, whereas tumor-synthesised TGF-β contributed to induction of peripheral Treg cells.  相似文献   

16.
17.
《Autophagy》2013,9(7):969-971
Recent data strongly support the idea that the orchestrated interaction between cancer and other cells in the tumor microenvironment is a vital component in the neoplastic process. Thus, tumor cells take advantage of the signaling molecules of the immune system to proliferate, survive and invade other tissues. CCL2 (Chemokine (C-C motif) ligand 2, Monocyte chemoattractant protein-1 (MCP-1)) has been demonstrated to play a significant role in prostate cancer neoplasia and invasion, and is highly expressed in the tumor microenvironment. We recently reported that CCL2 elicits a strong survival advantage in prostate cancer PC3 cells through PI3K/Akt-dependent regulation of autophagy via the mammalian target of rapamycin (mTOR) pathway and importantly, survivin up-regulation is essential to this survival mechanism. Autophagy protects cells from nutrient depletion stress, but, paradoxically, excessive autophagy will result in cell death. How these life or death decisions are regulated remains unclear. Here we discuss the function of survivin in the control of autophagy and the interaction between CCL2, survivin and autophagy in the complex program of tumor progression.

Addendum to: Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via PI3K/AKT-dependent survivin up-regulation. J Biol Chem 2008; In press.  相似文献   

18.
Tumor progression is controlled by signals from cellular and extra-cellular microenvironment including stromal cells and the extracellular matrix. Consequently, three-dimensional in vitro tumor models are essential to study the interaction of tumor cells with their microenvironment appropriately in a biologically relevant manner. We have previously used organotypic co-cultures to analyze the malignant growth of human squamous cell carcinoma (SCC) cell lines on a stromal equivalent in vitro. In this model, SCC cell lines are grown on a collagen-I gel containing fibroblasts. Since macrophages play a critical role in the progression of many tumor types, we now have expanded this model by integrating macrophages into the collagen gel of these organotypic tumor co-cultures. This model was established as a murine and a human system of skin SCCs. The effect of macrophages on tumor progression depends on their polarization. We demonstrate that macrophage polarization in organotypic co-cultures can be modulated towards and M1 or an M2 phenotype by adding recombinant IFN-γ and LPS or IL-4 respectively to the growth medium. IL-4 stimulation of macrophage-containing cultures resulted in enhanced tumor cell invasion evidenced by degradation of the basement membrane, enhanced collagenolytic activity and increased MMP-2 and MMP-9. Interestingly, extended co-culture with tumor cells for three weeks resulted in spontaneous M2 polarization of macrophages without IL-4 treatment. Thus, we demonstrate that macrophages can be successfully integrated into organotypic co-cultures of murine or human skin SCCs and that this model can be exploited to analyze macrophage activation towards a tumor supporting phenotype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号