首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally >?95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.  相似文献   

2.
Three cultivars differing in their susceptibility to water stress were compared—Phaseolus vulgaris cv. Carioca (susceptible), Vigna unguiculata cv. IT83D (intermediately tolerant) and V. unguiculata cv. EPACE-1 (tolerant)—during an imposed water stress treatment. Variation in leaf gas exchange (i.e. assimilation and stomatal conductance) and leaf relative water content in response to progressive substrate water depletion were investigated. To verify the extent of the injury caused by the drought treatment, leaf gas exchange was measured after rehydration. In the three cultivars, stomatal conductance declined before leaf relative water content was affected. P. vulgaris showed the largest decrease in the rate of stomatal conductance with decreasing substrate water content compared to both V. unguiculata cultivars. Photosynthetic assimilation rates were largely dependent on stomatal aperture, but there was evidence of the participation of non-stomatal factors in the reduction of CO2 fixation. The response of leaf gas exchange parameters to severe water stress conditions differed significantly between P. vulgaris and V. unguiculata cultivars. After rehydration, cultivars can be characterised according to the degree of injury induced by the drought treatment: V. unguiculata cv. EPACE-1 as the least affected, V. unguiculata cv. IT83D slightly affected and P. vulgaris cv. Carioca strongly affected. Similar ranking was obtained with experiments previously performed at a cellular and subcellular level. Our results confirm the utility of physiological parameters as early screening tools for drought resistance in bean cultivars.  相似文献   

3.
In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.  相似文献   

4.
Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters.  相似文献   

5.
Biodiesel fuel (BDF), which refers to fatty acid alkyl esters, has attracted considerable attention as an environmentally friendly alternative fuel for diesel engines. Alkali catalysis is widely applied for the commercial production of BDF. However, enzymatic transesterification offers considerable advantages, including reducing process operations in biodiesel fuel production and an easy separation of the glycerol byproduct. The high cost of the lipase enzyme is the main obstacle for a commercially feasible enzymatic production of biodiesel fuels. To reduce enzyme associated process costs, the immobilization of fungal mycelium within biomass support particles (BSPs) as well as expression of the lipase enzyme on the surface of yeast cells has been developed to generate whole-cell biocatalysts for industrial applications.  相似文献   

6.
The ammonia and phosphorus removal efficiencies of the microalgae Chlorella vulgaris and Scenedesmus dimorphus, during biotreatment of secondary effluent from an agroindustrial wastewater of a dairy industry and pig farming, were evaluated. The microalgae were isolated from a wastewater stabilization pond near Santafé de Bogotá, Colombia. Batch cultures were made using both species in 4-1 cylindrical glass bioreactors each containing 2l of culture. Chlorella vulgaris was also cultivated on wastewater in a triangular bioreactor. Three 216-h experimental cycles were run for each microalga and in each bioreactor. In the cylindrical bioreactor, S. dimorphus was more efficient in removing ammonia than C. vulgaris. However, the final efficiency of both microalgae at the end of each cycle was similar. Both microalgae removed phosphorus from the wastewater to the same extent in a cylindrical bioreactor. Using C. vulgaris, the triangular bioreactor was superior for removing ammonia and the cylindrical bioreactor was superior for removing phosphorus. This study shows the potential of using these microalgae to reduce the environmental pollution of heavily contaminated agroindustrial waters currently disposed of untreated into the waterways and streams of tropical Colombia.  相似文献   

7.
1. The curves representing the reciprocal fluorescence yield of chlorophyll a of Photosystem II (PS II) in Chlorella vulgaris as a function of the concentration of m-dinitrobenzene in the states P Q and P Q-, are found to be straight parallel lines; P is the primary donor and Q the primary acceptor of PS II. In the weakly trapping state P Q- the half-quenching of dinitrobenzene is about 0.2 mM, in vitro it is of the order of 10 mM. The fluorescence yield as a function of the concentration of a quencher is described for three models for the structure of pigment systems: the model of separate units, the model of limited energy transfer between the units, and the matrix model. If it is assumed that the rate constant of quenching by dinitrobenzene is high and thus the number of dinitrobenzene molecules per reaction center low, it can be concluded that the pigment system of PS II in C. vulgaris is a matrix of chlorophyll molecules in which the reaction centers are embedded. Theoretical and experimental evidence is consistent with such an assumption.

For Cyanidium caldarium the zero fluorescence yield Ф0 and its quenching by dinitrobenzene were found to be much smaller than the corresponding quantities for C. vulgaris. Nevertheless, our measurements on C. caldarium could be interpreted by the assumption that the essential properties (rate constants, dinitrobenzene quenching) of PS II are the same for these two species belonging to such widely different groups.

2. The measured dinitrobenzene concentrations required for half-quenching in vivo and other observations are explained by (non-rate-limiting) energy transfer between the chlorophyll a molecules of PS II and by the assumptions that dinitrobenzene is approximately distributed at random in the membrane and does not diffuse during excitation.

3. The fluorescence kinetics of C. vulgaris during a 350 ns laser flash of variable intensity could be simulated on a computer using the matrix model. From the observed fluorescence quenching by the carotenoid triplet (CT) and the measurement of the number of CT per reaction center via difference absorption spectroscopy, the rate constant for quenching of CT is calculated to be kT = 3.3 · 1011 s−1 which is almost equal to the rate constant of trapping by an open reaction center (Duysens, L.N.M. (1979) CIBA Foundation Symposium 61 (New Series), pp. 323–340).

4. The fluorescence quenching by CT in non-treated spinach chloroplasts after a 500 ns laser flash (Breton, J., Geacintov, N.E. and Swenberg, C.E. (1979) Biochim. Biophys. Acta 548, 616–635) could be explained within the framework of the matrix model when the value for kT is used as given in point 3.

5. The observations mentioned under point 1 indicate that the fluorescence yield Ф0 for centers in trapping state P Q is probably for a fraction exceeding 0.8 emitted by PS II.  相似文献   


8.
Muhammad Ashraf  Aafia Iram 《Flora》2005,200(6):535-546
A greenhouse experiment was conducted to assess the effect of water stress on growth and metabolic changes in nodules and other plant parts of two leguminous species, Phaseolus vulgaris and Sesbania aculeata, with the major objective that nodules play a vital role in drought tolerance. Imposition of water deficit conditions for 45 days to 15-day-old plants of P. vulgaris and S. aculeata reduced shoot mass and nodule mass of both species, but the reduction was more pronounced in P. vulgaris than in S. aculeata. Nitrate reductase (NR) activity was reduced more in the leaves and nodules of P. vulgaris than in S. aculeata. Soluble proteins in the nodules of S. aculeata were more decreased as compared to that in P. vulgaris. Free amino acids increased in all parts of both species due to water deficit, but a higher increase was observed in leaf and nodules of P. vulgaris than in S. aculeata. Osmoprotectants such as proline and glycine betaine increased more in the nodules and other parts of S. aculeata under drought stress. In conclusion, S. aculeata (salt tolerant) showed a higher degree of drought tolerance than P. vulgaris (salt sensitive). Drought tolerance of S. aculeata was found to be associated with a smaller reduction in number and mass of root nodules, a high activity of nitrate reductase in leaves and nodules, high accumulation of free proline in roots and nodules, and high glycine betaine content in nodules.  相似文献   

9.
The relationship between O2 and an active oxygen scavenging system in Chlorella vulgaris var.vulgaris (IAM C-534) was investigated. When Chlorella vulgaris was exposed to 2% O2, only traces of active oxygen scavenging enzymes were found. When the Chlorella vulgaris was treated with 20% or 50% O2, it was shown that the level of enzyme activity increased as the O2 concentration increased. An increase in enzyme activity was not found in any specific enzyme but in all of the enzymes, but the level of glutathione and ascorbate remained the same in all the cases. In addition, the photosynthetic efficiency also decreased as the concentration of O2 was increased. These results suggest that an O2 enriched environment can lead to an increase in the production of active oxygen species such as Obullet2 and H2O2 and to a decrease in the photosynthetic efficiency in Chlorella vulgaris. The hydroxyl radical (bulletOH) was detected directly in the Chlorella vulgaris suspension with a spin trapping reagent. It was also clear that the increase in the bulletOH intensity as the visible light intensity increased was unrelated to the O2 concentration. It was suggested that the conditions for producing bulletOH and the other active oxygen species were different, and that two types of oxygen stress should exist in the Chlorella vulgaris.  相似文献   

10.
Using ESR with 5,5-dimethyl-l-pyrroline N-oxide (DMPO) as a spin-trapping reagent, we measured the levels of free radical species generated from living cells of Chlorella vulgaris var. vulgails (IAM C-534). To investigate the production of free radicals in the living Chlorella vulgaris cells, the influence of DMPO toward the intact cells of the Chlorella vulgaris using the O2 evolution rate was first studied as a guide. Since the 02 evolution rate was not changed by DMPO, it was judged that DMPO has no toxicity toward the intact cells of Chlorella vulgaris.

Only hydroxyl radicals (-OH) were detected as the DMPO-OH adduct in the suspension of intact cells of Chlorella vulgaris irradiated with visible light. Moreover, since production of -OH was inhibited by some hydroxyl radical scavengers such as KI and ethanol, production of -OH was proved to be due to hydroxyl radicals. It was also clear that the intensity of OH increased with increasing irradiation intensity of visible light. Therefore, it was suggested that -OH might be one of the photoinhibition factors of the intact Chlorella vulgaris cells in severe light conditions.  相似文献   

11.
The aim of the study was to verify whether the infusion of a lipid emulsion causes a rise in vascular pressure related to an imbalance in the production of vasoconstricting and vasodilatating eicosanoids. Segments of umbilical veins were perfused with and without 1.5 μM indomethacin (cyclooxygenase inhibitor) in solutions differing only in their lipid content (control vs. lipid). The lipid-induced higher pressure (p < 0.05) was associated with an inhibition (p < 0.05) in the output of the vasodilatator PGI2, and an increase (p < 0.01) in the production of the vasoconstrictor PGF2. Indomethacin abolished differences in pressure, but produced a rise (p < 0.01) in vascular tone of both the control and lipid-containing solutions by inhibiting PGI2 synthesis. Prostacyclin was the only eicosanoid significantly correlated (p < 0.01) to vascular tone. The lipid emulsion was therefore linked to the inhibition of the conversion of PGH2 to PGI2. The ensuing greater PGH2 availability would result in vivo, in the increased synthesis of vasoconstricting eicosanoids. The lipid-containing solution produced vasoactive responses similar to those reported with tert-butyl hydroperoxide, suggesting that hydroperoxides contaminating commonly used lipid emulsions could be causing a prostanoid-dependent vasoconstricton.  相似文献   

12.
Liquid and gaseous fuels from biotechnology: challenge and opportunities   总被引:3,自引:0,他引:3  
Abstract: This paper presents challenging opportunities for production of liquid and gaseous fuels by biotechnology. From the liquid fuels, ethyl alcohol production has been widely researched and implemented. The major obstacle for large scale production of ethanol for fuel is the cost, whereby the substrate represents one of the major cost components. Various scenarios will be presented for a critical assessment of cost distribution for production of ethanol from various substrates by conventional and high rate processes. The paper also focuses on recent advances in the research and application of biotechnological processes and methods for the production of liquid transportation fuels other than ethanol (other oxygenates; diesel fuel extenders and substitutes), as well as gaseous fuels (biogas, methane, reformed syngas). Potential uses of these biofuels are described, along with environmental concerns which accompany them. Emphasis is also put on microalgal lipids as diesel substitute and biogas/methane as a renewable alternative to natural gas. The capturing and use of landfill gases is also mentioned, as well as microbial coal liquefaction. Described is also the construction and performance of microbial fuel cells for the direct high-efficiency conversion of chemical fuel energy to electricity. Bacterial carbon dioxide recovery is briefly dealt with as an environmental issue associated with the use of fossil energy.  相似文献   

13.
The Life cycle inventory analysis (LCI) for the freight traffic with heavy duty vehicles in Germany was determined for the reference year 1995 and the target year 2010 by application of ISO 14040 and ISO 14041. Based on these results and under consideration of the dynamic development of road freight traffic with German heavy duty vehicles of >14 t max laden weight and composition of the German heavy duty vehicles fleet in this class the LCI for the introduction of various scenarios for reducing emissions from freight traffic was generated. Special emphasis was placed in the determination of the LCI for the implementation of primary, secondary and a combination of primary and secondary emission reduction measures for heavy duty diesel engines such as variation of diesel fuel characteristics, engine-based measures for exhaust gas optimisation, urea selective catalytic reduction (SCR) process with and without fuel consumption optimised diesel engines and particulate trap for exhaust gas optimised diesel engines with low sulphur diesel fuel. The overall environmental effects of the investigated measures on the other phases of the product life cycle of the freight traffic with heavy duty vehicles and on associated and new products to be introduced was included in the generated results for the LCI of each variant. For the implementation of the urea SCR process the results are based on manufacturer data for the overall production process of SCR honeycomb catalysts and SCR application measurements in engine and field test after a travelled distance of between 187,825 and 325,178 km under road traffic conditions with typical EURO 2 standard diesel engines for heavy duty vehicles with a max laden weight of >32 t under control of and data certification by TüV Automotive Bayern Sachsen GmbH. Phase 2: Life Cycle Impact Assessment (DOI: http://dx.doi.Org/10.1065/ Ica2000.12.044.2) Phase 3: Life Cycle Interpretation (DOI: http://dx.doi.orq/10.1065/ Ica2000.12.044.3)  相似文献   

14.
The deacetylation and depolymerization reactions of chitin/chitosan from three crustacean species (Paralomis granulosa, Lithodes antarcticus and Palinurus vulgaris) were evaluated under the same conditions. The average molecular weight and the mole fraction of N-acetylated units were the parameters studied in the resulting chitosans. During the N-deacetylation process P. granulosa, L. antarcticus and P. vulgaris follow a pseudo-first order kinetics and their apparent rate constants are very similar. However, the degradation rate of chitosan in the first 45 min of this process is higher for P. vulgaris. The depolymerization process follows a pseudo-first order kinetics for the three species, but in the first 9 min P. vulgaris shows a slightly lower depolymerization rate. Hence, depending on the ash contents, crystallinity and the physicochemical characteristics of chitin from these sources, the obtained chitosans show different qualities.  相似文献   

15.
16.
The PAH profile was characterized in diesel fuel samples collected from different service stations in Agra (India) by using a gas chromatograph equipped with a flame ionization detector (FID). The low molecular weight PAHs were predominant, ranging from 4.4 × 102 to 1.7 × 103 mg l? 1 in fuel. Exhaust emissions from a diesel generator and a four-stroke engine (Skoda) powered by these fuels were monitored by a stack sampler and quantified for PAHs. The high molecular weight PAHs (DbA+IP, BghiP, and BaP, BbF+BkF) were the dominant PAHs in exhaust emissions. Differences in PAH emission factors for the two engines were found and these differences could be related to the combustion conditions affecting the temperature of flue gas. Emission factors and output/input ratio for individual PAHs suggest that the low molecular weight compounds in the fuel contribute to pyrosynthesis of high molecular weight in exhaust. Unburnt fuel partially contributes to low molecular weight PAHs in exhaust. Further, the relative carcinogenic contributions of each compound in the fuel and exhaust were calculated using the TEF approach. DbA + IP and BaP were significant contributors to the carcinogenicity of the PAH mixture in the exhaust.  相似文献   

17.
The high energy and petroleum based fuels demand of the world require use of alternative fuels from materials available within each country. Therefore biofuels may be an alternative to mineral diesel. A local pilot production of sunflower oil was implemented in order to test the possibility to reduce fossil fuels consumption on a local scale. Vegetable oils can be directly obtained from oilseed plants and can be used as energy sources in internal combustion engines.Environmental Impact Indicators were provided by Material Flow Accounting, Embodied Energy Analysis and Emergy Accounting. All three approaches reveal that the agricultural phase is the critical step in the whole production line from the point of view of environmental impact. The renewability calculated for the sunflower oil is 33.6%.A comparative Life Cycle Assessment analysis for the sunflower oil production line from conventional farming with organic farming showed environmental advantages.Furthermore use of vegetable oils instead of diesel oil as energy sources in internal combustion engines reduces carbon dioxide emissions of 59%.This study represents an opportunity for farms to reduce dependence on petroleum and to explore energy production systems exploiting renewable energy.  相似文献   

18.
By means of a λZAP II cDNA library constructed from seedlings of Beta vulgaris vulgaris and immunoscreening, a cDNA clone containing a partial sequence of a new ribosome-inactivating protein (RIP) was obtained. As confirmed by Western blot analysis, this clone produced a RIP upon induction with IPTG. We called it betavulgin (Bvg). The recombinant protein (re-Bvg) was somewhat smaller than plant-derived RIP (28 versus 30 and 32 kDa), but showed the specific N-glycosidase activity on tobacco ribosomes, confirming its RIP character. The cDNA was sequenced and the missing 5'-end was established by RACE using bvg-specific primers. The entire cDNA was 1080 nucleotides in length and encoded a protein of 272 amino acids with a sequence identity of 26–40% with other RIP.  相似文献   

19.
Ethanol-diesel fuel blends -- a review   总被引:16,自引:0,他引:16  
Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.  相似文献   

20.
Polydora vulgaris Mohammad, 1972, a commensal borer of the oysters Pinctada margaritifera and Hyotissa hyotis from the South China Sea, was investigated by means of starch gel electrophoresis. Polydora vulgaris and the allopatric sibling Polydora glycymerica Radashevsky, 1993, a commensal borer of the bivalve Glycymeris yessoensis from the Sea of Japan, were compared with respect to their allozymic variation and number of isozyme loci. Interspecific differences in the number of gene loci coding for three enzymes: alanopine dehydrogenase, glucose-6-phosphate isomerase and -iditol dehydrogenase were revealed suggesting that we are dealing with two valid species. Two different modes of origin duplicate loci in polydorids are dicussed—polyploidization and regional gene duplication. The use of gene number as a character for discriminating between morphologically indistinguishable allopatric polydorid taxa is outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号