首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND INFORMATION: DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. RESULTS: We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4',6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. CONCLUSIONS: These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.  相似文献   

2.
We have demonstrated previously that adult human synovial membrane-derived mesenchymal stem cells (hSM-MSCs) have myogenic potential in vitro (De Bari, C., F. Dell'Accio, P. Tylzanowski, and F.P. Luyten. 2001. Arthritis Rheum. 44:1928-1942). In the present study, we have characterized their myogenic differentiation in a nude mouse model of skeletal muscle regeneration and provide proof of principle of their potential use for muscle repair in the mdx mouse model of Duchenne muscular dystrophy. When implanted into regenerating nude mouse muscle, hSM-MSCs contributed to myofibers and to long term persisting functional satellite cells. No nuclear fusion hybrids were observed between donor human cells and host mouse muscle cells. Myogenic differentiation proceeded through a molecular cascade resembling embryonic muscle development. Differentiation was sensitive to environmental cues, since hSM-MSCs injected into the bloodstream engrafted in several tissues, but acquired the muscle phenotype only within skeletal muscle. When administered into dystrophic muscles of immunosuppressed mdx mice, hSM-MSCs restored sarcolemmal expression of dystrophin, reduced central nucleation, and rescued the expression of mouse mechano growth factor.  相似文献   

3.
4.
Duchenne muscular dystrophy is the most prevalent inheritable muscle disease. Transplantation of autologous stem cells with gene direction is an ideal therapeutic approach for the disease. The current study aimed to investigate the restoration of myofibers in mdx mice after mdx bone marrow-derived mesenchymal stem cell (mMSC) transplantation with human microdystrophin delivery. Possible mechanisms of action were also studied. In our research, mMSCs were successfully transduced by retrovirus carrying a functional human microdystrophin gene. Transplantation of transduced mMSCs enabled persistent dystrophin restoration in the skeletal muscle of mdx mice up to the 12th week after transplantation. Simultaneous coexpression of human microdystrophin and desmin showed that implanted mMSCs are capable of long-term survival as muscle satellite cells.  相似文献   

5.
Recently, induced pluripotent stem cells (iPS cells) have been derived from various techniques and show great potential for therapy of human diseases. Furthermore, the iPS technique can be used to provide cell models to explore pathological mechanisms of many human diseases in vitro, such as Duchenne muscular dystrophy (DMD), which is a severe recessive X-linked form of muscular dystrophy without effective treatment. In this study, we try to determine whether there are different characteristics of myocytes from mdx iPS cells and C57BL/10 iPS cells. Our results showed that both of mdx and C57BL/10 cells could be induced into iPS cells in vitro, whereas colony-forming ability of mdx iPS cells was much weaker than that of C57BL/10 iPS cells. Meanwhile, mdx iPS cells could be induced to differentiate into myocytes, whereas their differentiation efficiency was much lower than that of C57BL/10 iPS cells. And, the number of apoptotic cells in differentiated myocytes from mdx iPS cells was significantly higher than that from C57BL/10 iPS cells. More importantly, treatment of a pan-caspase inhibitor (Z-VAD) produced a significant decrease in apoptotic cells. This study might add some insight to the biology study of dystrophin gene.  相似文献   

6.
Bone marrow (BM) transplantation in mice suggests the existence of pluripotent cells able to differentiate into skeletal muscle tissue, although sustained myofiber reconstitution has not yet been achieved. We investigated the myogenic potential of mouse BM cells and evaluated whether a BM fraction enriched for cells expressing skeletal muscle markers would ameliorate muscle repair, when compared to whole BM, into the dystrophic mdx mouse. We demonstrate that cells expressing striated-muscle-specific proteins are already present in the BM independently from experimentally forced myogenic conversion. We observed the presence of both markers of early myogenic program such as Pax3, Myf5, MyoD, desmin, and late myogenesis such as myosin heavy chain and alpha-sarcomeric actin. These myogenic cells are more represented in the early nonadherent BM fraction, which generates clones able to fully differentiate into myotubes. Transplantation in mdx mice by intravenous injection of whole BM and a tenfold BM myogenic enriched fraction resulted in BM reconstitution and limited dystrophin restoration. Taken together, these data show that a fraction of BM cells have a definite potential for differentiation along the skeletal muscle pathway and can be recruited by muscle repair mechanisms. They also indicate that factors limiting the degree of muscle recruitment and the host stem cell competition should be assessed in order to evaluate the usefulness of BM-derived myogenic cells into the context of cell-mediated gene therapy of inherited muscle diseases.  相似文献   

7.
Muscle-derived stem cells (MDSCs) can differentiate into multiple lineages, including haematopoietic lineages. However, it is unknown whether MDSCs preserve their myogenic potential after differentiation into other lineages. To address this issue, we isolated from dystrophic muscle a population of MDSCs that express stem-cell markers and can differentiate into various lineages. After systemic delivery of three MDSC clones into lethally irradiated mice, we found that differentiation of the donor cells into various lineages of the haematopoietic system resulted in repopulation of the recipients' bone marrow. Donor-derived bone-marrow cells, isolated from these recipients by fluorescence-activated cell sorting (FACS), also repopulated the bone marrow of secondary, lethally irradiated, recipients and differentiated into myogenic cells both in vitro and in vivo in normal mdx mice. These findings demonstrate that MDSC clones retain their myogenic potential after haematopoietic differentiation.  相似文献   

8.
Yu M  Zhang C  Zhang Y  Feng S  Yao X  Lu X 《Cytotherapy》2007,9(1):44-52
BACKGROUND: The value of transplantation of BM stem cells in aged (12-month-old) mdx was evaluated because it is thought to be a more ideal model for studying the praxiology of Duchenne muscular dystrophy (DMD). The possible mechanisms of stem cell differentiation were then discussed. METHODS: BM was isolated from 8-10-week-old male C57 BL/10 mice. After injecting BM cells into 12-month-old female mdx mice through the tail vein, the expression of dystrophin and MyoD was detected at different time points by immunofluorescence staining, RT-PCR and Western blot. RESULTS: The C57 male mice donor-specific and Y-chromosome-specific sequence could be detected in all female aged mdx mice, implying the success of the transplantation. Expression of dystrophin and MyoD was detected and increased over time. DISCUSSION: BM cells were recruited to the muscle and partially restored specific pathophysiologic features of the dystrophic muscle in aged mdx mice. Muscle differentiation of BM cells recapitulated embryonic myogenesis.  相似文献   

9.
Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder in children, is an X-linked recessive muscle disease characterized by the absence of dystrophin at the sarcolemma of muscle fibers. We examined a putative endometrial progenitor obtained from endometrial tissue samples to determine whether these cells repair muscular degeneration in a murine mdx model of DMD. Implanted cells conferred human dystrophin in degenerated muscle of immunodeficient mdx mice. We then examined menstrual blood–derived cells to determine whether primarily cultured nontransformed cells also repair dystrophied muscle. In vivo transfer of menstrual blood–derived cells into dystrophic muscles of immunodeficient mdx mice restored sarcolemmal expression of dystrophin. Labeling of implanted cells with enhanced green fluorescent protein and differential staining of human and murine nuclei suggest that human dystrophin expression is due to cell fusion between host myocytes and implanted cells. In vitro analysis revealed that endometrial progenitor cells and menstrual blood–derived cells can efficiently transdifferentiate into myoblasts/myocytes, fuse to C2C12 murine myoblasts by in vitro coculturing, and start to express dystrophin after fusion. These results demonstrate that the endometrial progenitor cells and menstrual blood–derived cells can transfer dystrophin into dystrophied myocytes through cell fusion and transdifferentiation in vitro and in vivo.  相似文献   

10.
In Duchenne muscular dystrophy (DMD), dystrophin mutation leads to progressive lethal skeletal muscle degeneration. For unknown reasons, dystrophin deficiency does not recapitulate DMD in mice (mdx), which have mild skeletal muscle defects and potent regenerative capacity. We postulated that human DMD progression is a consequence of loss of functional muscle stem cells (MuSC), and the mild mouse mdx phenotype results from greater MuSC reserve fueled by longer telomeres. We report that mdx mice lacking the RNA component of telomerase (mdx/mTR) have shortened telomeres in muscle cells and severe muscular dystrophy that progressively worsens with age. Muscle wasting severity parallels a decline in MuSC regenerative capacity and is ameliorated histologically by transplantation of wild-type MuSC. These data show that DMD progression results, in part, from a cell-autonomous failure of?MuSC to maintain the damage-repair cycle initiated by dystrophin deficiency. The essential role of MuSC function has therapeutic implications for DMD.  相似文献   

11.
Background information. DMD (Duchenne muscular dystrophy) is a devastating X‐linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose‐derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X‐linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co‐cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)‐positive ASCs and DAPI (4′,6‐diamidino‐2‐phenylindole)‐stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.  相似文献   

12.
Mdx mice are an experimental model of Duchenne muscular dystrophy caused by mutations in the dystrophin gene. Repeated cycles of muscle degeneration-regeneration are common for mdx mice. Disrupted neuromuscular junctions also characterize mdx mice. The structure of mdx mice neuromuscular junctions and the differentiation of striated muscle fibers were investigated 4, 8, 16, and 24 weeks after transplantation of C57BL/6 Lin(−) bone-marrow stem cells. We found that the death of striated muscle fibers decreased 4 weeks after the transplantation of bone-marrow stem cells. Accumulation of muscle fibers without centrally located nuclei began in 8 weeks and dystrophin synthesis increased in 16–24 weeks after the bone-marrow stem cells transplantation. On the longitudinal sections of quadriceps muscle of mdx mice 4 weeks after transplantation, we observed a reduced quantity of acetylcholine receptor clusters and an increase in their area in neuromuscular junctions. Sixteen weeks after the transplantation, the total area of neuromuscular junctions increased due to an enlarged number of acethylcholine receptors and their extended area. The single intramuscular transplantation of C57BL/6 Lin(−) bone-marrow stem cells induces the differentiation of mdx mice striated muscle fibers and improves the structure of neuromuscular junctions.  相似文献   

13.
Embryonic stem cells (ES cells), bone marrow-derived mesenchymal stem cells, umbilical cord blood-derived mesenchymal stem cells, and hepatic stem cells in liver have been known as a useful source that can induce to differentiate into hepatocytes. In this study, we examined whether human adipose tissue-derived stromal cells (hADSC) can differentiate into hepatic lineage in vitro. hADSC, that were induced to differentiate into hepatocyte-like cells by the treatment of HGF and OSM, had morphology similar to hepatocytes. Addition of DMSO enhanced differentiation into hepatocytes. RT-PCR and immunocytochemical analysis showed that hADSC express albumin and alpha-fetoprotein during differentiation. Differentiated hADSC showed LDL uptake and production of urea. Additionally, transplanted hADSC to CCl4-injured SCID mouse model were able to be differentiated into hepatocytes and they expressed albumin in vivo. Mesenchymal stem cells isolated from human adipose tissue are immunocompatible and are easily isolated. Therefore, hADSC may become an alternative source to hepatocyte regeneration or liver cell transplantation.  相似文献   

14.
Mesenchymal stem cells are believed to be involved in the formation of mesenchymal tissues, including bone, cartilage, muscle, tendon and adipose tissue. Interestingly, it has previously been reported that mesenchymal stem cells could also differentiate into endoderm-derived cells, such as hepatocytes. The amniotic membrane contains mesenchymal cells and is a readily available human tissue. Therefore, we investigated the potential of mesenchymal cells derived from human amniotic membrane (MC-HAM) to differentiate into hepatocytes. We analyzed the expression of hepatocyte-specific genes in MC-HAM before and after induction of differentiation into hepatocytes. We observed the expression of mRNAs encoding albumin, a-fetoprotein, cytokeratin 18 and alpha1-antitrypsin, but not those encoding glucose-6-phosphatase or ornithine transcarbamylase, prior to the induction of differentiation. However, immunocytochemistry revealed that albumin and alpha-fetoprotein were abundantly produced only after the induction of differentiation into hepatocytes. In addition, we observed the storage of glycogen, a characteristic feature of hepatocytes, using periodic acid-Schiff staining of MC-HAM induced to differentiate into hepatocytes. Overall, MC-HAM appear to be able to differentiate into cells possessing some characteristics of hepatocytes. Although further studies should be carried out to determine whether such in vitro-differentiated cells can function in vivo as hepatocytes. These cells may be useful in various applications that require human hepatocytes.  相似文献   

15.
16.
Abstract: Neuronal nitric oxide synthase (nNOS) is a component of the dystrophin complex in skeletal muscle. The absence of dystrophin protein in Duchenne muscular dystrophy and in mdx mouse causes a redistribution of nNOS from the plasma membrane to the cytosol in muscle cells. Aberrant nNOS activity in the cytosol can induce free radical oxidation, which is toxic to myofibers. To test the hypothesis that derangements in nNOS disposition mediate muscle damage in Duchenne dystrophy, we bred dystrophin-deficient mdx male mice and female mdx heterozygote mice that lack nNOS. We found that genetic deletion of nNOS does not itself cause detectable pathology and that removal of nNOS does not influence the extent of increased sarcolemmal permeability in dystrophin-deficient mice. Thus, histological analyses of nNOS-dystrophin double mutants show pathological changes similar to the dystrophin mutation alone. Taken together, nNOS defects alone do not produce muscular dystrophy in the mdx model.  相似文献   

17.
The possibility of using bone marrow stem cells for treatment of Duchenne muscular dystrophy is intensely studied. Mdx mice are the most widely used laboratory model of Duchenne muscular dystrophy. One approach of cell therapy of muscular dystrophy is substitution of bone marrow in mdx mice after their X-ray irradiation. However, this method does not allow one to increase significantly dystrophin synthesis in muscular fibers of mdx mice. To improve the effect of transplanted cells on muscle regeneration, we additionally treated mdx mice subjected to transplantation of bone marrow cells with a weak combined magnetic field tuned to ion parametric resonance for Ca2+ (Ca2+-CMF). We found that, in irradiated chimeric 3 and 5 Gy mdx mice, additional treatment with Ca2+-CMF for 1 month resulted in significant increases in the portions of dystrophin-positive muscle fibers, by 15.8 and 18.3%, respectively, as compared to the control groups. Furthermore, the share of muscle fibers without centrally located nuclei also increased. We suggest that the magnetic field with these parameters may stimulate functioning of nuclei of donor cells, which were incorporated into muscle fibers.  相似文献   

18.
19.
Several recent studies suggest the isolation of stem cells in skeletal muscle, but the functional properties of these muscle-derived stem cells is still unclear. In the present study, we report the purification of muscle-derived stem cells from the mdx mouse, an animal model for Duchenne muscular dystrophy. We show that enrichment of desmin(+) cells using the preplate technique from mouse primary muscle cell culture also enriches a cell population expressing CD34 and Bcl-2. The CD34(+) cells and Bcl-2(+) cells were found to reside within the basal lamina, where satellite cells are normally found. Clonal isolation and characterization from this CD34(+)Bcl-2(+) enriched population yielded a putative muscle-derived stem cell, mc13, that is capable of differentiating into both myogenic and osteogenic lineage in vitro and in vivo. The mc13 cells are c-kit and CD45 negative and express: desmin, c-met and MNF, three markers expressed in early myogenic progenitors; Flk-1, a mouse homologue of KDR recently identified in humans as a key marker in hematopoietic cells with stem cell-like characteristics; and Sca-1, a marker for both skeletal muscle and hematopoietic stem cells. Intramuscular, and more importantly, intravenous injection of mc13 cells result in muscle regeneration and partial restoration of dystrophin in mdx mice. Transplantation of mc13 cells engineered to secrete osteogenic protein differentiate in osteogenic lineage and accelerate healing of a skull defect in SCID mice. Taken together, these results suggest the isolation of a population of muscle-derived stem cells capable of improving both muscle regeneration and bone healing.  相似文献   

20.
目的建立Duchenne型肌营养不良(DMD)模型dko小鼠的鉴定方法,评估干细胞移植后dystrophin的再生水平。方法采用SSP-PCR方法鉴定杂合子鼠交配产生的子代鼠的基因型。生化分析仪测定dko小鼠血浆肌酸激酶含量,HE染色观察肌肉组织学变化。扩增人脐带间充质干细胞并注射到dko小鼠后肢肌肉,2个月后免疫荧光染色法检测dystrophin的表达。结果杂合子鼠交配可以产生三个基因型的子代鼠,21.2%的子代鼠可以鉴定为dko小鼠的基因型(285 bp)。dko小鼠显示了肌营养不良的症状,血浆肌酸激酶含量高达(16,988.52±617.48)IU/L,典型的病理变化包括肌纤维大小不一,多见核中移细胞,结缔组织增生或炎性细胞浸润。将人脐带间充质干细胞注射到dko小鼠后肢肌肉,2个月后可检测到人dystrophin的表达。结论采用SSP-PCR可用于鉴定dko小鼠基因型,dko小鼠是研究干细胞治疗DMD的理想动物模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号