首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 43 毫秒
1.

Background  

Sequence similarity searching is an important and challenging task in molecular biology and next-generation sequencing should further strengthen the need for faster algorithms to process such vast amounts of data. At the same time, the internal architecture of current microprocessors is tending towards more parallelism, leading to the use of chips with two, four and more cores integrated on the same die. The main purpose of this work was to design an effective algorithm to fit with the parallel capabilities of modern microprocessors.  相似文献   

2.
We introduce a metric for local sequence alignments that has utility for accelerating optimal alignment searches without loss of sensitivity. The metric's triangle inequality property permits identification of redundant database entries guaranteed to have optimal alignments to the query sequence that fall below a specified score threshold, thereby permitting comparisons to these entries to be skipped. We prove the existence of the metric for a variety of scoring systems, including the most commonly used ones, and show that a triangle inequality can be established as well for nucleotide-to-protein sequence comparisons. We discuss a database clustering and search strategy that takes advantage of the triangle inequality. The strategy permits moderate but significant acceleration of searches against the widely used "nr" protein database. It also provides a theoretically based method for database clustering in general and provides a standard against which to compare heuristic clustering strategies.  相似文献   

3.
4.
MOTIVATION: It is widely recognized that homology search and ortholog clustering are very useful for analyzing biological sequences. However, recent growth of sequence database size makes homolog detection difficult, and rapid and accurate methods are required. RESULTS: We present a novel method for fast and accurate homology detection, assuming that the Smith-Waterman (SW) scores between all similar sequence pairs in a target database are computed and stored. In this method, SW alignment is computed only if the upper bound, which is derived from our novel inequality, is higher than the given threshold. In contrast to other methods such as FASTA and BLAST, this method is guaranteed to find all sequences whose scores against the query are higher than the specified threshold. Results of computational experiments suggest that the method is dozens of times faster than SSEARCH if genome sequence data of closely related species are available.  相似文献   

5.
6.
MOTIVATION: The accumulation of genome sequences will only accelerate in the coming years. We aim to use this abundance of data to improve the quality of genomic alignments and devise a method which is capable of detecting regions evolving under weak or no evolutionary constraints. RESULTS: We describe a genome alignment program AuberGene, which explores the idea of transitivity of local alignments. Assessment of the program was done based on a 2 Mbp genomic region containing the CFTR gene of 13 species. In this region, we can identify 53% of human sequence sharing common ancestry with mouse, as compared with 44% found using the usual pairwise alignment. Between human and tetraodon 93 orthologous exons are found, as compared with 77 detected by the pairwise human-tetraodon comparison. AuberGene allows the user to (1) identify distant, previously undetected, conserved orthogonal regions such as ORFs or regulatory regions; (2) identify neutrally evolving regions in related species which are often overlooked by other alignment programs; (3) recognize false orthologous genomic regions. The increased sensitivity of the method is not obtained at the cost of reduced specificity. Our results suggest that, over the CFTR region, human shares 10% more sequence with mouse than previously thought ( approximately 50%, instead of 40% found with the pairwise alignment).  相似文献   

7.
Independence of alignment and tree search   总被引:6,自引:0,他引:6  
I assert that similarity is the appropriate homology criterion for sequence alignment, as it is with morphology. Methods that select among alignments using parsimony-based tree lengths, as implemented in MALIGN and POY, arrange the data such that they are consistent with a minimum-evolution model. When combining data sets in phylogenetic analyses, we are not trying to reinforce our earlier hypotheses about relationships, but rather to test them. The severity of this test is compromised when congruence with other characters is favored when selecting among alignment parameters.  相似文献   

8.

Background

With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor.

Results

We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected.

Conclusion

We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism.
  相似文献   

9.
10.
MiSearch is an adaptive biomedical literature search tool that ranks citations based on a statistical model for the likelihood that a user will choose to view them. Citation selections are automatically acquired during browsing and used to dynamically update a likelihood model that includes authorship, journal and PubMed indexing information. The user can optionally elect to include or exclude specific features and vary the importance of timeliness in the ranking. AVAILABILITY: http://misearch.ncibi.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号