首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A ligase ribozyme that accelerates the ligation reaction with an oligonucleotide under low pH conditions was identified by in vitro adaptation in a previous study. We examined the effects of further rounds of evolution to isolate a more active ribozyme. The ribozyme, which was obtained after four rounds of evolution, was randomly mutated, and the resultant RNA library was subjected to in vitro selection at low pH. One ribozyme isolated from the pool was found to react 8,000 times faster than the original b1 ribozyme at pH 4. The reaction rate of the isolated ribozyme was enhanced at various pH values, and its pH dependence was less than that of the original ribozyme or the ribozyme selected with four rounds of evolution. The reaction rate of the isolated ribozyme was reduced in the presence of 3' primer, the sequence of which is complementary to the 3' primer-binding site of the ligase ribozyme. This inhibition induced by the primer oligonucleotide binding to the ribozyme 3' region implies that the 3' region plays a role in the ligation reaction of the ribozyme.  相似文献   

2.
A ligase ribozyme accelerating a ligation reaction with oligonucleotide under a low-pH condition was selected by in vitro adaptation. A ribozyme active at pH 7 was randomly mutated, and the resultant RNA library was subjected to in vitro adaptation under a low-pH reaction condition. At pH 4, the adapted RNAs reacted with the oligonucleotide substrates about 200 times faster than the original ribozyme. When the ribozyme was cloned and sequenced, 10 of the 30 clones sequenced had identical sequences. The differences in sequence from the original ribozyme were found at four positions in the middle region and at the 3' end. A few sequential differences dominated the activity of the ribozyme under the extreme condition. The adapted ribozyme had one repeating sequence that was critical for the activity.  相似文献   

3.
A cytidine-free ribozyme with RNA ligase activity was obtained by in vitro evolution, starting from a pool of random-sequence RNAs that contained only guanosine, adenosine, and uridine. This ribozyme contains 74 nt and catalyzes formation of a 3',5'-phosphodiester linkage with a catalytic rate of 0.016 min(-1). The RNA adopts a simple secondary structure based on a three-way junction motif, with ligation occurring at the end of a stem region located several nucleotides away from the junction. Cytidine was introduced to the cytidine-free ribozyme in a combinatorial fashion and additional rounds of in vitro evolution were carried out to allow the molecule to adapt to this added component. The resulting cytidine-containing ribozyme formed a 3',5' linkage with a catalytic rate of 0.32 min(-1). The improved rate of the cytidine-containing ribozyme was the result of 12 mutations, including seven added cytidines, that remodeled the internal bulge loops located adjacent to the three-way junction and stabilized the peripheral stem regions.  相似文献   

4.
Splice-site selection specificity in Tetrahymena self-splicing RNA is thought to be mediated by a base-paired complex between a CUCUCU sequence on the end of the 5' exon and a GGGAGG guide sequence in the intron. The substitution of uracil (U) in oligonucleotide mini-exons with 5-fluorouracil (UF), an analogue bearing a much more acidic N-3 proton, allowed us to test the role of hydrogen bonding between complementary bases in the splice-site selection process. The affinities of (U) and (UF) mini-exons for the ribozyme active site were similar and several orders of magnitude greater than expected from base pairing alone. In contrast to CUCU, the CUFCUF mini-exon lost substrate activity with increasing pH, presumably due to ionization of the UF residues. However, the apparent pK values of these residues were several pK units above that of free UF, indicating that the mini-exon is shielded from the solvent by an active site of low polarity. Loss of the pyrimidine N-3 hydrogen bond by selective ionization of the UF residues decreased the binding of CUFCUF to the ribozyme only 3-fold but did prevent its ligation to the 3' exon. Temperature dependence of substrate activity was identical for both (U) and (UF) mini-exons, whereas the UF-substituted ribozyme lost activity at a considerably lower temperature than did the natural (U) ribozyme. These observations indicate that hydrogen-bonded base pairs involving the U residues contribute little to the total binding energy of the 5' splice site with the active site of the ribozyme, but probably help to align the splice sites properly for ligation.  相似文献   

5.
The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N(6)-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N(6)-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N(6)-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential 'sequence specificity' could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation.  相似文献   

6.
The syntheses and RNA cleavage efficiencies of a new series of oligonucleotide conjugates of Cu(II)-serinol-terpyridine and 1,3-propanediol are reported. These reagents, termed ribozyme mimics, were designed such that they would yield multiple unpaired RNA residues directly opposite the site of the RNA cleavage catalyst upon ribozyme mimic-RNA duplex formation. This design effect was implemented using the 1,3-propanediol linker 3, which mimics the three-carbon spacing between the 5'- and 3'-hydroxyls of a natural nucleotide. Incorporation of one or more of these 1,3-propanediol linkers at positions directly adjacent to the serinol-terpyridine modification in the ribozyme mimic DNA strand resulted in cleavage at multiple phosphates in a complementary 31-mer RNA target sequence. The linkers effectively created artificial mismatches in the RNA-DNA duplexes, rendering the opposing RNA residues much more susceptible to cleavage via the transesterification/hydrolysis pathway. The RNA cleavage products produced by the various mimics correlated directly with the number and locations of the linkers in their DNA strands, and the most active ribozyme mimic in the series exhibited multiple turnover in the presence of excess 31-mer RNA target.  相似文献   

7.
Covalent photocleavable attachment of small molecules or peptides to oligonucleotides is an integral strategic element in the selection of novel nucleic acid enzymes. Here, we report the synthesis of a multipurpose, photocleavable bifunctional linker (PCBL) suitable for nucleic acid selections and other biotechnology applications. PCBL contains a photocleavable O-nitrobenzyl group flanked on one side by an N-hydroxysuccinimidyl ester (reactive toward primary amines) and on the other side by a sulfhydryl. To demonstrate the utility of PCBL, the linker was used to couple an analog of the antibiotic chloramphenicol (Cam) to the 5' end of an amino-modified 8-mer DNA oligo. Coupling was confirmed by MALDI-TOF spectrophotometry. Decoupling was performed by irradiating the coupled species with near-UV light (approximately 360 nm), regenerating the original amino-modified oligo. Ligation of the Cam-PCBL-DNA conjugate to random-sequence RNA generated a diversity library appropriate for the selection of new ribozymes that catalyze reactions involving the tethered substrate. Coupling and decoupling of the Cam analog from the library was monitored on a trilayered organomercurial polyacrylamide gel. The coupling/decoupling strategy described here is readily generalized to many combinations of macromolecules and small molecules. For example, analogs of this small molecule-DNA conjugate can be generated as synthons for ligation to nucleic acid diversity libraries during each round of novel ribozyme selections, or they can be immobilized onto chips for addresssably reversible microarray analysis.  相似文献   

8.
Application of ribozymes for knockdown of RNA targets requires the identification of suitable target sites according to the consensus sequence. For the hairpin ribozyme, this was originally defined as Y?2 N?1 *G+1 U+2 Y+3 B+?, with Y = U or C, and B = U, C or G, and C being the preferred nucleobase at positions -2 and +4. In the context of development of ribozymes for destruction of an oncogenic mRNA, we have designed ribozyme variants that efficiently process RNA substrates at U?2 G?1 *G+1 U+2 A+3 A+? sites. Substrates with G?1 *G+1 U+2 A+3 sites were previously shown to be processed by the wild-type hairpin ribozyme. However, our study demonstrates that, in the specific sequence context of the substrate studied herein, compensatory base changes in the ribozyme improve activity for cleavage (eight-fold) and ligation (100-fold). In particular, we show that A+3 and A+? are well tolerated if compensatory mutations are made at positions 6 and 7 of the ribozyme strand. Adenine at position +4 is neutralized by G? →U, owing to restoration of a Watson-Crick base pair in helix 1. In this ribozyme-substrate complex, adenine at position +3 is also tolerated, with a slightly decreased cleavage rate. Additional substitution of A? with uracil doubled the cleavage rate and restored ligation, which was lost in variants with A?, C? and G?. The ability to cleave, in conjunction with the inability to ligate RNA, makes these ribozyme variants particularly suitable candidates for RNA destruction.  相似文献   

9.
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.  相似文献   

10.
RNA catalysis is important in the processing and translation of RNA molecules, yet the mechanisms of catalysis are still unclear in most cases. We have studied the role of nucleobase catalysis in the hairpin ribozyme, where the scissile phosphate is juxtaposed between guanine and adenine bases. We show that a modified ribozyme in which guanine 8 has been substituted by an imidazole base is active in both cleavage and ligation, with ligation rates 10-fold faster than cleavage. The rates of both reactions exhibit bell-shaped dependence on pH, with pK(a) values of 5.7 +/- 0.1 and 7.7 +/- 0.1 for cleavage and 6.1 +/- 0.3 and 6.9 +/- 0.3 for ligation. The data provide good evidence for general acid-base catalysis by the nucleobases.  相似文献   

11.
RNAs that bind to xanthine (2,6-dioxypurine) were isolated from a population of 10(12) random sequences by in vitro selection. These xanthine-binding RNAs were found to have a 10 nt consensus sequence at an internal loop in the most probable secondary structure. By trimming one of the xanthine-binding RNAs, a representative xanthine-binding RNA (designated as XBA) of 32 nt residues was prepared. The dissociation constant of this RNA for xanthine was determined to be 3.3 microM by equilibrium filtration experiments. The XBA RNA can bind to guanine as well, whereas it hardly accommodates adenine, cytosine or uracil. The K d values for various xanthine/guanine analogues were determined, and revealed that the N1H, N7 and O6 moieties of the ligand are involved in the binding with the XBA RNA. The ribonuclease sensitivities of some internal-loop residues changed upon the addition of xanthine, suggesting that the internal loop of the XBA RNA is involved in the ligand binding. Interestingly, the consensus sequence of the xanthine/guanine-binding RNAs is the same as a sequence in one of the internal loops of the hairpin ribozyme, except for a substitution that is neutral with respect to xanthine/guanine binding.  相似文献   

12.
The glmS ribozyme is a catalytic RNA that self-cleaves at its 5'-end in the presence of glucosamine 6-phosphate (GlcN6P). We present structures of the glmS ribozyme from Thermoanaerobacter tengcongensis that are bound with the cofactor GlcN6P or the inhibitor glucose 6-phosphate (Glc6P) at 1.7 A and 2.2 A resolution, respectively. The two structures are indistinguishable in the conformations of the small molecules and of the RNA. GlcN6P binding becomes apparent crystallographically when the pH is raised to 8.5, where the ribozyme conformation is identical with that observed previously at pH 5.5. A key structural feature of this ribozyme is a short duplex (P2.2) that is formed between sequences just 3' of the cleavage site and within the core domain, and which introduces a pseudoknot into the active site. Mutagenesis indicates that P2.2 is required for activity in cis-acting and trans-acting forms of the ribozyme. P2.2 formation in a trans-acting ribozyme was exploited to demonstrate that N1 of the guanine at position 1 contributes to GlcN6P binding by interacting with the phosphate of the cofactor. At neutral pH, RNAs with adenine, 2-aminopurine, dimethyladenine or purine substitutions at position 1 cleave faster with glucosamine than with GlcN6P. This altered cofactor preference provides biochemical support for the orientation of the cofactor within the active site. Our results establish two features of the glmS ribozyme that are important for its activity: a sequence within the core domain that selects and positions the cleavage-site sequence, and a nucleobase at position 1 that helps position GlcN6P.  相似文献   

13.
A novel ribozyme that accelerates the ligation of β-nicotinamide mononucleotide (β-NMN)-activated RNA fragments was isolated and characterized. This artificial ligase ribozyme (YFL ribozyme) was isolated by a “design and selection” strategy, in which a modular catalytic unit was generated on a rationally designed modular scaffold RNA. Biochemical analyses of the YFL ribozyme revealed that it catalyzes RNA ligation in a template-dependent manner, and its activity is highly dependent on its architecture, which consists of a modular scaffold and a catalytic unit. As the design and selection strategy was used for generation of DSL ribozyme, isolation of the YFL ribozyme indicated the versatility of this strategy for generation of functional RNAs with modular architectures. The catalytic unit of the YFL ribozyme accepts not only β-NMN but also inorganic pyrophosphate and adenosine monophosphate as leaving groups for RNA ligation. This versatility of the YFL ribozyme provides novel insight into the possible roles of β-NMN (or NADH) in the RNA world.  相似文献   

14.
Variants of trans-acting hammerhead ribozymes were modified with Locked Nucleic Acid (LNA) nucleotides to reduce their size, to improve access to their RNA target and to explore combinational properties of binary constructs. Using low Mg(2+) concentrations and low substrate and ribozyme concentrations, it was found that insertion of LNA monomers into the substrate binding arms allowed these to be shortened and results in a very active enzyme under both single and multiple turnover conditions. Incorporation of a mix of LNA and DNA residues further increased the multiple turnover cleavage activity. At high Mg(2+) concentrations or high substrate and ribozyme concentrations, the enhancing effect of LNA incorporation was even more prominent. Using LNA in the stem of Helix II diminished cleavage activity, but allowed deletion of the tetra-loop and thus separating the ribozyme into two molecules with each half binding to the substrate. Efficient, binary hammerhead ribozymes were pursued in a combinatorial approach using a 6-times 5 library, which was analysed concerning the best combinations, buffer conditions and fragment ratios.  相似文献   

15.
We have characterized the structural organization and catalytic properties of the large nucleolar group I introns (NaSSU1) of the different Naegleria species N. jamiesoni, N. andersoni, N. italica, and N. gruberi. NaSSU1 consists of three distinct RNA domains: an open reading frame encoding a homing-type endonuclease, and a small group I ribozyme (NaGIR1) inserted into the P6 loop of a second group I ribozyme (NaGIR2). The two ribozymes have different functions in RNA splicing and processing. NaGIR1 is an unusual self-cleaving group I ribozyme responsible for intron processing at two internal sites (IPS1 and IPS2), both close to the 5' end of the open reading frame. This processing is hypothesized to lead to formation of a messenger RNA for the endonuclease. Structurally, NaGIR2 is a typical group IC1 ribozyme, catalyzing intron excision and exon ligation reactions. NaGIR2 is responsible for circularization of the excised intron, a reaction that generates full-length RNA circles of wild-type intron. Although it is only distantly related in primary sequence, NaSSU1 RNA has a predicted organization and function very similar to that of the mobile group I intron DiSSU1 of Didymium, the only other group I intron known to encode two ribozymes. We propose that these twin-ribozyme introns define a distinct category of group I introns with a conserved structural organization and function.  相似文献   

16.
We have carried out an in vitro selection to obtain an allosteric hairpin ribozyme, which has cleavage activity in the presence of an exogenous short oligonucleotide as a regulator. Random sequences were inserted in a region corresponding to the hairpin loop of the ribozyme. After 12 rounds of selection, DNA templates were cloned. Of a total of 34 clones, 18 contained the same sequence, and the obtained hairpin ribozymes showed the cleavage activity specifically in the presence of the regulator oligonucleotide. All of the clones contained sequences complementary to the regulator oligonucleotide. The ribozymes with high cleavage activities gained characteristic hairpin loops at the random domain, which were similar to each other. In the absence of the oligonucleotide, the loop domain within the allosteric ribozyme probably forms a slipped hairpin loop, and the complementary sequence, with the regulator oligonucleotide located at the single stranded loop, would allow easy access of the oligonucleotide. The binding of the regulator oligonucleotide triggers a structural change of the hairpin loop to form an active conformation. Furthermore, we constructed an allosteric hammerhead ribozyme by introducing the characteristic hairpin loop. The modified hammerhead ribozyme was also changed to an allosteric ribozyme, which was activated by the addition of the regulator oligonucleotide. The characteristic hairpin loop, which was proved to be regulated by an exogenous oligonucleotide in this report, may be used to control RNA functions in various fields.  相似文献   

17.
A non-Watson-Crick G-A/A-G base pair is found in SECIS (selenocysteine-insertion sequence) element in the 3'-untranslated region of Se-protein mRNAs and in the functional site of the hammerhead ribozyme. We studied the stability of G-A/A-G base pair (bold) in 17mer GT(U)GACGGAAACCGGAAC synthetic DNA and RNA oligonucleotides by thermal melting experiments and gel electrophoresis. The measured Tm value of DNA oligonucleotide having G-A/A-G pair showed an intermediate value (58 degrees C) between that of Watson-Crick G-C/C-G base pair (75 degrees C) and that of G-G/A-A of non-base-pair (40 degrees C). Similar thermal melting patterns were obtained with RNA oligonucleotides. This result indicates that the secondary structure of oligonucleotide having G-A/A-G base pair is looser than that of the G-C type Watson-Crick base pair. In the comparison between RNA and DNA having G-A/A-G base pair, the Tm value of the RNA oligonucleotide was 11 degrees C lower than that of DNA, indicating that DNA has a more rigid structure than RNA. The stained pattern of oligonucleotide on polyacrylamide gel clarified that the mobility of the DNA oligonucleotide G-A/A-G base pair changed according to the urea concentration from the rigid state (near the mobility of G-C/C-G oligonucleotide) in the absence of urea to the random state (near the mobility of G-G/A-A oligonucleotide) in 7 M urea. However, the RNA oligonucleotide with G-A/A-G pair moved at an intermediate mobility between that of oligonucleotide with G-C/C-G and of the oligonucleotide with G-G/A-A, and the mobility pattern did not depend on urea concentration. Thus, DNA and RNA oligonucleotides with the G-A/A-G base pair showed a pattern indicating an intermediate structure between the rigid Watson-Crick base pair and the random structure of non-base pair. RNA with G-A/A-G base pair has the intermediate structure not influenced by urea concentration. Finally, this study indicated that the intermediate rigidity imparted by Non-Watson-Crick base pair in SECIS element plays an important role in the selenocysteine expression by UGA codon.  相似文献   

18.
Semi-random libraries of DNA 6mers and RNase H digestion were applied to search for sites accessible to hybridization on the genomic and antigenomic HDV ribozymes and their 3′ truncated derivatives. An approach was proposed to correlate the cleavage sites and most likely sequences of oligomers, members of the oligonucleotide libraries, which were engaged in the formation of RNA–DNA hybrids. The predicted positions of oligomers hybridizing to the genomic ribozyme were compared with the fold of polynucleotide chain in the ribozyme crystal structure. The data exemplified the crucial role of target RNA structural features in the binding of antisense oligonucleotides. It turned out that cleavages were induced if the bound oligomer could adapt an ordered helical conformation even when it required partial penetration of an adjacent double-stranded region. The major features of RNA structure disfavoring hybridization and/or RNase H hydrolysis were sharp turns of the polynucleotide chain and breaks in stacking interactions of bases. Based on the predicted positions of oligomers hybridizing to the antigenomic ribozyme we chose and synthesized four antisense DNA 6mers which were shown to direct hydrolysis in the desired, earlier predicted regions of the molecule.  相似文献   

19.
Single-stranded M13mp18 phage DNA was methylated with dimethylsulfate (DMS), and further treated with alkali to ring-open N7-methylguanine residues and yield 2-6-diamino-4-hydroxy-5N-methylformamidopyrimidine (Fapy) residues. Nucleotide incorporation during in vitro DNA synthesis on methylated template using E. coli DNA polymerase Klenow fragment (Kf polymerase) was reduced compared to the unmethylated template. Additional treatment of the methylated template with NaOH to generate Fapy residues, further reduced in vitro DNA synthesis compared to the synthesis on methylated templates, which suggested that Fapy residues were a block to in vitro DNA synthesis. Analysis of the termination products on sequencing gels, assuming that synthesis stops one base before a blocking lesion, indicated that arrest of DNA synthesis upon direct alkylation of single-stranded DNA occurred 1 base 3' to template adenine residues in the case of Kf polymerase and 1 base 3' to adenine and cystosine residues for T4 polymerase. When the alkylated templates were treated with NaOH to produce a template which converted all the N7-methylguanine residues to Fapy residues, the blocks to DNA synthesis were still observed one base before adenine residues. In addition to the stops previously observed for the methylated templates, however, new stops occurred one base 3' to template guanine residues for synthesis using both Kf polymerase and T4 polymerase. Fapy residues, therefore, represent a potential lethal lesion which may also arrest in vivo DNA synthesis if not repaired.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号