首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.

Background and Aims

The study of variation in number, position and type of floral organs may serve as a key to understanding the mechanisms underlying their variation, and will make it possible to improve the analysis of gene function in model plant species by means of a more accurate characterization of mutant phenotypes. The present analysis was carried out in order to understand the correlation between number and position of floral organs in Arabidopsis thaliana.

Methods

An analysis of number and position of organs in flowers of wild type as well as in a series of mutations with floral organ position alterations was carried out, using light and electron microscopy. Variation common to different genotypes was analysed by means of individual diagrams, upon which generalized diagrams depicting variation in number and position of organs, were built by superimposition.

Key Results and Conclusions

It is shown that in the Arabidopsis flower a correlation exists between positions of petals and sepals, as well as between positions of stamens and carpels, whereas the position of carpels does not seem to depend on number and position of petals and stamens. This suggests that the position of organs in the basal (sepals) and apical (carpels) parts of the flower are determined before that in the intermediate zone. This assumption is consistent with the results of mathematical modelling and is supposed to be the consequence of stem-cell activity in the flower.  相似文献   

2.

Background and Aims

Synorganisation of floral organs, an important means in angiosperm flower evolution, is mostly realized by congenital or post-genital organ fusion. Intimate synorganisation of many floral organs without fusion, as present in Geranium robertianum, is poorly known and needs to be studied. Obdiplostemony, the seemingly reversed position of two stamen whorls, widely distributed in core eudicots, has been the subject of much attention, but there is confusion in the literature. Obdiplostemony occurs in Geranium and whether and how it is involved in this synorganisation is explored here.

Methods

Floral development and architecture were studied with light microscopy based on microtome section series and with scanning electron microscopy.

Key Results

Intimate synorganisation of floral organs is effected by the formation of five separate nectar canals for the proboscis of pollinators. Each nectar canal is formed by six adjacent organs from four organ whorls. In addition, the sepals are hooked together by the formation of longitudinal ribs and grooves, and provide a firm scaffold for the canals. Obdiplostemony provides a guide rail within each canal formed by the flanks of the antepetalous stamen filaments.

Conclusions

Intimate synorganisation in flowers can be realized without any fusion, and obdiplostemony may play a role in this synorganisation.  相似文献   

3.

Background and Aims

Ericales are a major group of extant asterid angiosperms that are well represented in the Late Cretaceous fossil record, mainly by flowers, fruits and seeds. Exceptionally well preserved fossil flowers, here described as Glandulocalyx upatoiensis gen. & sp. nov., from the Santonian of Georgia, USA, yield new detailed evidence of floral structure in one of these early members of Ericales and provide a secure basis for comparison with extant taxa.

Methods

The floral structure of several fossil specimens was studied by scanning electron microscopy (SEM), light microscopy of microtome thin sections and synchrotron-radiation X-ray tomographic microscopy (SRXTM). For direct comparisons with flowers of extant Ericales, selected floral features of Actinidiaceae and Clethraceae were studied with SEM.

Key Results

Flowers of G. upatoiensis have five sepals with quincuncial aestivation, five free petals with quincuncial aestivation, 20–28 stamens arranged in a single series, extrorse anther orientation in the bud, ventral anther attachment and a tricarpellate, syncarpous ovary with three free styles and numerous small ovules on axile, protruding-diffuse and pendant placentae. The calyx is characterized by a conspicuous indumentum of large, densely arranged, multicellular and possibly glandular trichomes.

Conclusions

Comparison with extant taxa provides clear evidence for a relationship with core Ericales comprised of the extant families Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae and Ericaceae. Within this group, the most marked similarities are with extant Actinidiaceae and, to a lesser degree, with Clethraceae. More detailed analyses of the relationships of Glandulocalyx and other Ericales from the Late Cretaceous will require an improved understanding of the morphological features that diagnose particular extant groups defined on the basis of molecular data.  相似文献   

4.
5.

Background and Aims

Plants use a diverse range of visual and olfactory cues to advertize to pollinators. Australian Chiloglottis orchids employ one to three related chemical variants, all 2,5-dialkylcyclohexane-1,3-diones or ‘chiloglottones’ to sexually attract their specific male pollinators. Here an investigation was made of the physiological aspects of chiloglottone synthesis and storage that have not previously been examined.

Methods

The location of chiloglottone production was determined and developmental and diurnal changes by GC-MS analysis of floral tissue extracts was monitored in two distantly related Chiloglottis species. Light treatment experiments were also performed using depleted flowers to evaluate if sunlight is required for chiloglottone production; which specific wavelengths of light are required was also determined.

Key Results

Chiloglottone production only occurs in specific floral tissues (the labellum calli and sepals) of open flowers. Upon flower opening chiloglottone production is rapid and levels remain more or less stable both day and night, and over the 2- to 3-week lifetime of the flower. Furthermore, it was determined that chiloglottone production requires continuous sunlight, and determined the optimal wavelengths of sunlight in the UV-B range (with peak of 300 nm).

Conclusions

UV-B light is required for the synthesis of chiloglottones – the semiochemicals used by Chiloglottis orchids to sexually lure their male pollinators. This discovery appears to be the first case to our knowledge where plant floral odour production depends on UV-B radiation at normal levels of sunlight. In the future, identification of the genes and enzymes involved, will allow us to understand better the role of UV-B light in the biosynthesis of chiloglottones.  相似文献   

6.

Background and Aims

The palm tribe Chamaedoreeae displays flowers arranged in a complex partial inflorescence called an acervulus. This type of partial inflorescence has so far not been reported elsewhere in the largest palm subfamily Arecoideae, which is traditionally characterized by flowers predominantly arranged in triads of one central female and two lateral male flowers. The ontogenetic basis of the acervulus is as yet unknown and its structural diversity throughout the genera of the Chamaedoreeae poorly recorded. This study aims to provide critical information on these aspects.

Methods

Developmental series and mature inflorescences were sampled from plants cultivated in international botanical gardens and wild populations. The main techniques employed included scanning electronic microscopy and serial anatomical sectioning of resin-embedded fragments of rachillae.

Key Results

Inflorescence ontogeny in Hyophorbe lagenicaulis demonstrates that the acervulus and the inflorescence rachilla form a condensed and cymose branching system resembling a coenosome. Syndesmy results from a combined process of rapid development and adnation, without or with reduced axis elongation. Acervulus diversity in the ten taxa of the Chamaedoreeae studied is displayed at the level of their positioning within the inflorescence, their arrangement, the number of floral buds and their sexual expression.

Conclusions

The results show that a more general definition of the type of partial inflorescence observed within the large subfamily Arecoideae would correspond to a cyme rather than to a floral triad. In spite of their common cymose architecture, the floral triad and the acervulus present differences with respect to the number and arrangement of floral buds, the superficial pattern of development and sexual expression.  相似文献   

7.

Background and Aims

The family of MADS box genes is involved in a number of processes besides controlling floral development. In addition to supplying homeotic functions defined by the ABC model, they influence flowering time and transformation of vegetative meristem into inflorescence meristem, and have functions in roots and leaves. Three Gerbera hybrida At-SOC1-like genes (Gh-SOC1–Gh-SOC3) were identified among gerbera expressed sequence tags.

Methods

Evolutionary relationships between SOC1-like genes from gerbera and other plants were studied by phylogenetic analysis. The function of the gerbera gene Gh-SOC1 in gerbera floral development was studied using expression analysis, protein–protein interaction assays and reverse genetics. Transgenic gerbera lines over-expressing or downregulated for Gh-SOC1 were obtained using Agrobacterium transformation and investigated for their floral phenotype.

Key Results

Phylogenetic analysis revealed that the closest paralogues of At-SOC1 are Gh-SOC2 and Gh-SOC3. Gh-SOC1 is a more distantly related paralogue, grouping together with a number of other At-SOC1 paralogues from arabidopsis and other plant species. Gh-SOC1 is inflorescence abundant and no expression was seen in vegetative parts of the plant. Ectopic expression of Gh-SOC1 did not promote flowering, but disturbed the development of floral organs. The epidermal cells of ray flower petals appeared shorter and their shape was altered. The colour of ray flower petals differed from that of the wild-type petals by being darker red on the adaxial side and greenish on the abaxial surface. Several protein–protein interactions with other gerbera MADS domain proteins were identified.

Conclusions

The At-SOC1 paralogue in gerbera shows a floral abundant expression pattern. A late petal expression might indicate a role in the final stages of flower development. Over-expression of Gh-SOC1 led to partial loss of floral identity, but did not affect flowering time. Lines where Gh-SOC1 was downregulated did not show a phenotype. Several gerbera MADS domain proteins interacted with Gh-SOC1.  相似文献   

8.

Background and Aims

Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined.

Methods

Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles.

Key Results

Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps.

Conclusions

Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.  相似文献   

9.

Background and Aims

If stabilizing selection by pollinators is a prerequisite for pollinator-mediated floral evolution, spatiotemporal variation in the pollinator assemblage may confuse the plant–pollinator interaction in a given species. Here, effective pollinators in a living fossil plant Nelumbo nucifera (Nelumbonaceae) were examined to test whether beetles are major pollinators as predicted by its pollination syndrome.

Methods

Pollinators of N. nucifera were investigated in 11 wild populations and one cultivated population, and pollination experiments were conducted to examine the pollinating role of two major pollinators (bees and beetles) in three populations.

Key Results

Lotus flowers are protogynous, bowl shaped and without nectar. The fragrant flowers can be self-heating during anthesis and produce around 1 million pollen grains per flower. It was found that bees and flies were the most frequent flower visitors in wild populations, contributing on average 87·9 and 49·4 % of seed set in Mishan and Lantian, respectively. Beetles were only found in one wild population and in the cultivated population, but the pollinator exclusion experiments showed that beetles were effective pollinators of Asian sacred lotus.

Conclusions

This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome.  相似文献   

10.

Background and Aims

‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown.

Methods

Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis).

Key Results

Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent.

Conclusions

The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun.  相似文献   

11.

Background and Aims

In the sedge subfamily Mapanioideae there are considerable discrepancies between the standard trimerous monocot floral architecture expected and the complex floral and inflorescence morphologies seen. Decades of debate about whether the basic reproductive units are single flowers or pseudanthia have not resolved the question. This paper evaluates current knowledge about Mapaniid reproductive structures and presents an ontogenetic study of the Mapaniid genus Lepironia with the first floral protein expression maps for the family, localizing the products of the APETALA1/FRUITFULL-like (AP1/FUL) MADS-box genes with the aim of shedding light on this conundrum.

Methods

A range of reproductive developmental stages, from spikelet primordia through to infructescence material, were processed for anatomical and immunohistochemical analyses.

Key Results

The basic reproductive unit is subtended by a bract and possesses two prophyll-like structures, the first organs to be initiated on the primordium, which grow rapidly, enclosing two whorls of initiating leaf-like structures with intervening stamens and a central gynoecium, formed from an annular primordium. The subtending bract and prophyll-like structures possess very different morphologies from that of the internal leaf-like structures and do not show AP1/FUL-like protein localization, which is otherwise strongly localized in the internal leaf-like structures, stamens and gynoecia.

Conclusions

Results support the synanthial hypothesis as the evolutionary origin of the reproductive unit. Thus, the basic reproductive unit in Lepironia is an extremely condensed pseudanthium, of staminate flowers surrounding a central terminal pistillate female flower. Early in development the reproductive unit becomes enclosed by a split-prophyll, with the whole structure subtended by a bract.  相似文献   

12.
Niu Y  Yang Y  Zhang ZQ  Li ZM  Sun H 《Annals of botany》2011,108(7):1257-1268

Background and aims

Pollination-induced floral changes, which have been widely documented in flowering plants, have been assumed to enhance the plant''s reproductive success. However, our understanding of the causes and consequences of these changes is still limited. Using an alpine gynodioecious species, Cyananthus delavayi, we investigated the factors affecting floral closure and estimated the fitness consequences of floral closure.

Methods

The timings of floral closure and fertilization were determined. The effects of pollen load, pollen type (cross- or self-pollen) and floral morph (female or perfect flower) on the occurrence of floral closure were examined. Ovule fertilization and seed production were examined to investigate the causes and consequences of floral closure. Flowers were manipulated to prevent closing to detect potential benefits for female fitness.

Key Results

Floral closure, which could be induced by a very low pollen load, occurred within 4–7 h after pollination, immediately following fertilization. The proportion of closed flowers was influenced by pollen load and floral morph, but not by pollen type. Floral closure was more likely to occur in flowers with a higher proportion of fertilized ovules, but there was no significant difference in seed production between closed and open flowers. Those flowers in which closure was induced by natural pollination had low fruit set and seed production. Additionally, seed production was not influenced by closing-prevented manipulation when sufficient pollen deposition was received.

Conclusions

The occurrence of floral closure may be determined by the proportion of fertilized ovules, but this response can be too sensitive to ensure sufficient pollen deposition and can, to some extent, lead to a cost in female fitness. These results implied that the control of floral receptivity by the recipient flowers does not lead to an optimal fitness gain in C. delavayi.  相似文献   

13.

Background and Aims

Most of the diversity in the pseudanthia of Asteraceae is based on the differential symmetry and sexuality of its flowers. In Anacyclus, where there are (1) homogamous capitula, with bisexual, mainly actinomorphic and pentamerous flowers; and (2) heterogamous capitula, with peripheral zygomorphic, trimerous and long-/short-rayed female flowers, the floral ontogeny was investigated to infer their origin.

Methods

Floral morphology and ontogeny were studied using scanning electron microscope and light microscope techniques

Key Results

Disc flowers, subtended by paleae, initiate acropetally. Perianth and androecium initiation is unidirectional/simultaneous. Late zygomorphy occurs by enlargement of the adaxial perianth lobes. In contrast, ray flowers, subtended by involucral bracts, initiate after the proximal disc buds, breaking the inflorescence acropetal pattern. Early zygomorphy is manifested through the fusion of the lateral and abaxial perianth lobes and the arrest of the adaxials. We report atypical phenotypes with peripheral ‘trumpet’ flowers from natural populations. The peripheral ‘trumpet’ buds initiate after disc flowers, but maintain an actinomorphic perianth. All phenotypes are compared and interpreted in the context of alternative scenarios for the origin of the capitulum and the perianth identity.

Conclusions

Homogamous inflorescences display a uniform floral morphology and development, whereas the peripheral buds in heterogamous capitula display remarkable plasticity. Disc and ray flowers follow different floral developmental pathways. Peripheral zygomorphic flowers initiate after the proximal actinomorphic disc flowers, behaving as lateral independent units of the pseudanthial disc from inception. The perianth and the androecium are the most variable whorls across the different types of flowers, but their changes are not correlated. Lack of homology between hypanthial appendages and a calyx, and the perianth double-sided structure are discussed for Anacyclus together with potential causes of its ray flower plasticity.  相似文献   

14.
15.

Background and Aims

Within Chenopodioideae, Atripliceae have been distinguished by two bracteoles enveloping the female flowers/fruits, whereas in other tribes flowers are described as ebracteolate with persistent perianth. Molecular phylogenetic hypotheses suggest ‘bracteoles’ to be homoplastic. The origin of the bracteoles was explained by successive inflorescence reductions. Flower reduction was used to explain sex determination. Therefore, floral ontogeny was studied to evaluate the nature of the bracteoles and sex determination in Atripliceae.

Methods

Inflorescences of species of Atriplex, Chenopodium, Dysphania and Spinacia oleracea were investigated using light microscopy and scanning electron microscopy.

Key Results

The main axis of the inflorescence is indeterminate with elementary dichasia as lateral units. Flowers develop centripetally, with first the formation of a perianth primordium either from a ring primordium or from five individual tepal primordia fusing post-genitally. Subsequently, five stamen primordia originate, followed by the formation of an annular ovary primordium surrounding a central single ovule. Flowers are either initially hermaphroditic remaining bisexual and/or becoming functionally unisexual at later stages, or initially unisexual. In the studied species of Atriplex, female flowers are strictly female, except in A. hortensis. In Spinacia, female and male flowers are unisexual at all developmental stages. Female flowers of Atriplex and Spinacia are protected by two accrescent fused tepal lobes, whereas the other perianth members are absent.

Conclusions

In Atriplex and Spinacia modified structures around female flowers are not bracteoles, but two opposite accrescent tepal lobes, parts of a perianth persistent on the fruit. Flowers can achieve sexuality through many different combinations; they are initially hermaphroditic, subsequently developing into bisexual or functionally unisexual flowers, with the exception of Spinacia and strictly female flowers in Atriplex, which are unisexual from the earliest developmental stages. There may be a relationship between the formation of an annular perianth primordium and flexibility in floral sex determination.  相似文献   

16.

Background and Aims

Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil.

Methods

Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed.

Key Results

In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator''s body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR–FR combination.

Conclusions

The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture.  相似文献   

17.

Background and Aims

Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.

Methods

Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.

Key Results

Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.

Conclusions

Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.  相似文献   

18.

Background and Aims

Plants vary widely in the extent to which seeds are produced via self-fertilization vs. outcrossing, and evolutionary change in the mating system is thought to be accompanied by genetic differentiation in a syndrome of floral traits. We quantified the pattern of variation and covariation in floral traits and the proportion of seeds outcrossed (t) to better understand the evolutionary processes involved in mating system differentiation among and within populations of the short-lived Pacific coastal dune endemic Camissoniopsis cheiranthifolia across its geographic range in western North America.

Methods

We quantified corolla width and herkogamy, two traits expected to influence the mating system, for 48 populations sampled in the field and for a sub-sample of 29 populations grown from seed in a glasshouse. We also measured several other floral traits for 9–19 populations, estimated t for 16 populations using seven allozyme polymorphisms, and measured the strength of self-incompatibility for nine populations.

Key Results

Floral morphology and self-incompatibility varied widely but non-randomly, such that populations could be assigned to three phenotypically and geographically divergent groups. Populations spanned the full range of outcrossing (t = 0·001–0·992), which covaried with corolla width, herkogamy and floral life span. Outcrossing also correlated with floral morphology within two populations that exhibited exceptional floral variation.

Conclusions

Populations of C. cheiranthifolia seem to have differentiated into three modal mating systems: (1) predominant outcrossing associated with self-incompatibility and large flowers; (2) moderate selfing associated with large but self-compatible flowers; and (3) higher but not complete selfing associated with small, autogamous, self-compatible flowers. The transition to complete selfing has not occurred even though the species appears to possess the required genetic capacity. We hypothesize that outcrossing populations in this species have evolved to different stable states of mixed mating.  相似文献   

19.
Sun HQ  Huang BQ  Yu XH  Kou Y  An DJ  Luo YB  Ge S 《Annals of botany》2011,107(1):39-47

Background and Aims

Increasing evidence challenges the conventional perception that orchids are the most distinct example of floral diversification due to floral or prezygotic isolation. Regarding the relationship between co-flowering plants, rewarding and non-rewarding orchids in particular, few studies have investigated whether non-rewarding plants affect the pollination success of rewarding plants. Here, floral isolation and mutual effects between the rewarding orchid Galearis diantha and the non-rewarding orchid Ponerorchis chusua were investigated.

Methods

Flowering phenological traits were monitored by noting the opening and wilting dates of the chosen individual plants. The pollinator pool and pollinator behaviour were assessed from field observations. Key morphological traits of the flowers and pollinators were measured directly in the field. Pollinator limitation and interspecific compatibility were evaluated by hand-pollination experiments. Fruit set was surveyed in monospecific and heterospecific plots.

Key Results

The species had overlapping peak flowering periods. Pollinators of both species displayed a certain degree of constancy in visiting each species, but they also visited other flowers before landing on the focal orchids. A substantial difference in spur size between the species resulted in the deposition of pollen on different regions of the body of the shared pollinator. Hand-pollination experiments revealed that fruit set was strongly pollinator-limited in both species. No significant difference in fruit set was found between monospecific plots and heterospecific plots.

Conclusions

A combination of mechanical isolation and incomplete ethological isolation eliminates the possibility of pollen transfer between the species. These results do not support either the facilitation or competition hypothesis regarding the effect of nearby rewarding flowers on non-rewarding plants. The absence of a significant effect of non-rewarding P. chusua on rewarding G. diantha can be ascribed to low levels of overlap between the pollinator pools of two species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号