首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus circulans was able to produce extracellular levansucrase using sucrose as carbon source optimally at 35°C. The enzymic synthesis of levan and fructo-oligosaccharides was studied using a 50% ethanol fraction of crude extract. The molecular weight of the synthesized levan was markedly affected by sucrose concentration, the molecular weight of levan decreased with increased sucrose concentration up to 32% whereby fructo-oligosaccharides were isolated. Temperature and the reaction time clearly affected the conversion of fructose to levan with molecular weight values ranging from 10 to 38 kDa. Identification of levan indicated that fructose was the building unit of the levan obtained. Thermal and pH stabilities of B. circulans levansucrase could be improved by enzyme glycosylation using sodium metaperiodate treatment. Chemical modification provides additional points of attachment of the enzyme to the support which offered the modified enzyme greater stabilization than did the free enzyme. The modified enzyme exhibited thermal tolerance up to 50°C, where it retained 88.25% of its activity, while the free enzyme only retained 64.55% of its original activity. The half-life significantly increased from 130 min for the free enzyme to 347 min for the modified enzyme at 50°C, however, it increased from 103 min for the free enzyme to 210 min for the modified enzyme at 60°C. Other properties i.e., the response to some metal ions as well as the ability to convert higher substrate levels and tolerance to an extension of the reaction periods were also improved upon modification. Obviously, the results obtained outlined the conditions leading to the formation of important high or low molecular weight or levan and fructo-oligosaccharides suitable for different industrial applications.  相似文献   

2.
After 24 h of incubation with only purified pectate lyase isolated from Bacillus pumilus DKS1 (EF467045), the weight loss of the ramie fibre was found to be 25%. To know the catalytic residue of pectate lyase the pel gene encoding a pectate lyase from the strain Bacillus pumilus DKS1 was cloned in E. coli XL1Blue and expressed in E. coli BL21 (DE3) pLysS. The pel gene was sequenced and showed 1032 bp length. After purification using CM-Sepharose the enzyme showed molecular weight of 35 kDa and maximal enzymatic activity was observed at 60°C and a pH range of 8.5–9.0. Both Ca2+ and Mn2+ ions were required for activity on Na-pectate salt substrates, while the enzyme was strongly inhibited by Zn2+ and EDTA. The deduced nucleotide sequence of the DKS1 pectate lyase (EU652988) showed 90% homology to pectate lyases from Bacillus pumilus SAFR-032 (CP000813). The 3D structure as well as the catalytic residues was predicted using EasyPred software and Catalytic Site Atlas (CSA), respectively. Site directed mutagenesis confirmed that arginine is an essential catalytic residue of DKS1 pectate lyase.  相似文献   

3.
In this study, a potent fibrinolytic enzyme-producing bacterium was isolated from soybean flour and identified as Bacillus subtilis K42 and assayed in vitro for its thrombolytic potential. The molecular weight of the purified enzyme was 20.5 kDa and purification increased its specific activity 390-fold with a recovery of 14%. Maximal activity was attained at a temperature of 40°C (stable up to 65°C) and pH of 9.4 (range: 6.5–10.5). The enzyme retained up to 80% of its original activity after pre-incubation for a month at 4°C with organic solvents such as diethyl ether (DE), toluene (TO), acetonitrile (AN), butanol (BU), ethyl acetate (EA), ethanol (ET), acetone (AC), methanol (ME), isopropanol (IP), diisopropyl fluorophosphate (DFP), tosyl-lysyl-chloromethylketose (TLCK), tosyl-phenylalanyl chloromethylketose (TPCK), phenylmethylsulfonylfluoride (PMSF) and soybean trypsin inhibitor (SBTI). Aprotinin had little effect on this activity. The presence of ethylene diaminetetraacetic acid (EDTA), a metal-chelating agent and two metallo protease inhibitors, 2,2′-bipyridine and o-phenanthroline, repressed the enzymatic activity significantly. This, however, could be restored by adding Co2+ to the medium. The clotting time of human blood serum in the presence of this enzyme reached a relative PTT of 241.7% with a 3.4-fold increase, suggesting that this enzyme could be an effective antithrombotic agent.  相似文献   

4.
The NAD+ dependent cytosolic Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from arms of Octopus vulgaris, Cuvier, 1787, (Octopoda, Cephalopoda) was purified to homogeneity and its kinetic properties investigated. The purification method consisted of ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulting in a 26-fold increase in specific activity and a final yield of approximately 16%. The apparent molecular weight of the purified native enzyme was 153 kDa. The protein is an homotetramer, composed of identical subunits with an apparent molecular weight of approximately 36 kDa. The Michaelis constants Km for both NAD+ and d-G3P were 66 μM and 320 μM, respectively. The maximal velocity Vmax of the purified enzyme was estimated to be 21.8 U/mg. Only one GAPDH isoform (pI 6.6) was obtained by isoelectrofocusing in polyacrylamide slab gels holding ampholyte generated pH gradients. Under the conditions of assay, the optimum activity occurs at pH 7.0 and at temperature of 35°C. Polyclonal antibodies raised in rabbits against the purified GAPDH immunostained a single 36 kDa GAPDH band on crude extract protein preparations blotted onto nitrocellulose.  相似文献   

5.
Alkaline protease production by a newly isolated Bacillus species from laundry soil was studied for detergent biocompatibility. From its morphological and nucleotide sequence (about 1.5 kb) of its 16S rDNA it was identified as Bacillus species with similarity to Bacillus species Y (Gen Bank entry: ABO 55095), and close homology with Bacillus cohnii YN-2000 (Gen Bank entry: ABO23412). Partial purification of the enzyme by ammonium sulfate (50–70% saturation) yielded 8-fold purity. Casein zymography and Sodium dodecylsulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) of the partially purified enzyme revealed two isozymes of molecular sizes approximately 66 kDa and 18 kDa, respectively. The enzyme was most active at pH 12 and 50°C. At pH 12 the enzyme was stable for 5 h and retained 60% activity. The enzyme retained 44% activity at 50°C up to 2 h. The protease showed good hydrolysis specificity with different substrates tested. The presence of Mn2+, Co2+ and ethylenediaminetetracetic acid (EDTA) showed profound increase in protease activity. The protease of Bacillus species Y showed excellent stability and compatibility with three locally available detergents (Kite, Tide and Aerial) up to 3 h retaining almost 70–80% activity and 10–20% activity at room temperature (30°C) and 50°C, respectively, indicating the potential role of this enzyme for detergent application.  相似文献   

6.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

7.
A putative aldehyde dehydrogenase (ALDH) gene, ybcD (gene locus b1467), was identified in the genome sequence of Bacillus licheniformis ATCC 14580. B. licheniformis ALDH (BlALDH) encoded by ybcD consists of 488 amino acid residues with a molecular mass of approximately 52.7 kDa. The coding sequence of ybcD gene was cloned in pQE-31, and functionally expressed in recombinant Escherichia coli M15. BlALDH had a subunit molecular mass of approximately 53 kDa and the molecular mass of the native enzyme was determined to be 220 kDa by FPLC, reflecting that the oilgomeric state of this enzyme is tetrameric. The temperature and pH optima for BlALDH were 37°C and 7.0, respectively. In the presence of either NAD+ or NADP+, the enzyme could oxidize a number of aliphatic aldehydes, particularly C3- and C5-aliphatic aldehyde. Steady-state kinetic study revealed that BlALDH had a K M value of 0.46 mM and a k cat value of 49.38/s when propionaldehyde was used as the substrate. BlALDH did not require metal ions for its enzymatic reaction, whereas the dehydrogenase activity was enhanced by the addition of disulfide reductants, 2-mercaptoethanol and dithiothreitol. Taken together, this study lays a foundation for future structure–function studies with BlALDH, a typical member of NAD(P)+-dependent aldehyde dehydrogenases.  相似文献   

8.
The activity of a dye-linked l-proline dehydrogenase (dye-l-proDH) was found in the crude extract of an aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis JCM 11548, and was purified 163-fold through four sequential chromatography steps. The enzyme has a molecular mass of about 108 kDa and is a homodimer with a subunit molecular mass of about 46 kDa. The enzyme retained more than 90% of its activity after incubation at 100 °C for 120 min (pH 7.5) or after incubation at pHs 4.5–9.0 for 30 min at 50 °C. The enzyme catalyzed l-proline dehydrogenation to Δ1-pyroline-5-carboxylate using 2,6-dichloroindophenol (DCIP) as the electron acceptor and the Michaelis constants for l-proline and DCIP were 1.67 and 0.026 mM, respectively. The prosthetic group on the enzyme was identified as flavin adenine dinucleotide by high-performance liquid chromatography. The subunit N-terminal amino acid sequence was MYDYVVVGAG. Using that sequence and previously reported genome information, the gene encoding the enzyme (Pcal_1655) was identified. The gene was then cloned and expressed in Escherichia coli and found to encode a polypeptide of 415 amino acids with a calculated molecular weight of 46,259. The dye-l-proDH gene cluster in P. calidifontis inherently differs from those in the other hyperthermophiles reported so far.  相似文献   

9.
A Psychrotolerant alkaline protease producing bacterium IIIM-ST045 was isolated from a soil sample collected from the Thajiwas glacier of Kashmir, India and identified as Stenotrophomonas sp. on the basis of its biochemical properties and 16S ribosomal gene sequencing. The strain could grow well within a temperature range of 4–37°C however, showed optimum growth at 15°C. The strain was found to over-produce proteases when it was grown in media containing lactose as carbon source (157.50 U mg−1). The maximum specific enzyme activity (398 U mg−1) was obtained using soya oil as nitrogen source, however, the inorganic nitrogen sources urea, ammonium chloride and ammonium sulphate showed the lowest production of 38.9, 62.2 and 57.9 U mg−1. The enzyme was purified to 18.45 folds and the molecular weight of the partially purified protease was estimated to be ~55 kDa by SDS-PAGE analysis. The protease activity increased as the increase in enzyme concentration while as the optimum enzyme activity was found when casein (1% w/v) was used as substrate. The enzyme was highly active over a wide range of pH from 6.5 to 12.0 showing optimum activity at pH 10.0. The optimum temperature for the enzyme was 15°C. Proteolytic activity reduced gradually with higher temperatures with a decrease of 56% at 40°C. The purified enzyme was checked for the removal of protein containing tea stains using a silk cloth within a temperature range of 10–60°C. The best washing efficiency results obtained at low temperatures indicate that the enzyme may be used for cold washing purposes of delicate fabrics that otherwise are vulnerable to high temperatures.  相似文献   

10.
A chitinase gene from Bacillus thuringiensis serovar konkukian S4 was cloned, sequenced, and heterologously expressed in Escherichia coli M15. Recombinant enzyme (Chi74) was purified by Ni-NTA affinity column chromatography. The chi74 gene contains an open reading frame (ORF), with a capacity to encode an endochitinase with a deduced molecular weight 74 kDa and predicted isoelectric point of 5.67. Comparison of Chi74 with other chitinases has shown that it contains a modular structure with an N-terminal family 18 catalytic-domain, a Fibronectin-III like domain and a C-terminal carbohydrate binding module (CBM-II). Turn over rate (K cat ) of the enzyme was determined using colloidal chitin (28.3 ± 0.70 S−1) as substrate. The Purified enzyme was active at a broad range of pH (pH 3.5–7.5) and temperature (20–70°C) with a peak activity at pH 5.5 and 55°C. However, the enzyme was found to be stable up to 30°C for longer incubation periods. Moreover, the purified enzyme was shown to inhibit fungal spore germination and hyphal growth in the pathogenic fungi Fusarium oxysporum and Aspergillus niger. These studies will lead us to develop broad spectrum resistance in the crop plants via co-expression of the chitinases and the insecticidal proteins.  相似文献   

11.
A 60 kDa phospholipase D (PLD) was obtained from Streptomyces olivochromogenes by one-step chromatography on Sepharose CL-6B. Maximal activity was at pH 8 and 75°C and the enzyme was stable from pH 7 to 13 and from 55 to 75°C. Thermal and pH stability with temperature optimum of the enzyme were highest among Streptomyces PLDs reported so far. The activity was Ca2+-dependent and enhanced by detergents. The Km and Vmax values for phosphatidylcholine were 0.6 mM and 650 μmol min−1 mg−1, respectively. In addition, the enzyme also revealed transphosphatidylation activity, which was optimum at pH 8 and 50°C. The first 15 amino acid residues of the N terminal sequence were ADYTPGAPGIGDPYY, which are significantly different from the other known PLDs. The enzyme may therefore be a novel PLD with potential application in the lipid industry.  相似文献   

12.
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme. K m, V max, and K cat of the enzyme were 4.727 × 10−2 mg/ml, 394.68 U, and 4.2175 × 10−2 s−1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65°C), with maximum activity at pH 11 and 60°C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65°C. Hg2+, Cu2+, Fe3+, Zn2+, Cd+, and Al3+ inhibited enzyme activity, while 1 mM Co2+ enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.  相似文献   

13.
A Bacillus subtilis strain BEC-1 demonstrating high carboxymethylcellulose-degrading activity was isolated from the forest soil sample. In order to characterize the biochemical specialty of its cellulase, the endoglucanase gene egl173 was cloned from this strain and was expressed in Escherichia coli. The gene encoded a protein of 499 amino acids with a molecular weight of 64 kDa. The purified Egl173 could hydrolyze both soluble and insoluble celluloses with distinct activities. This enzyme showed the highest enzyme activity at pH 4, maintained at least 85% activity in the pH range of 3–7, displayed maximum activity at 60°C and was highly stable between 30 and 60°C. It was found that this endoglucanase was increasedly active and retained its high stability after incubation with 5 M NaCl or 3 M KCl for 24 h. Furthermore, after incubation with 10 mM of dithiothreitol, the enzyme activity was significantly enhanced (125% of the control level). In the presence of diverse metal ions (except mercury and manganese cations), organic solvents, surfactants (except SDS) and chelating agent, this enzyme kept more than 85% active. This halo-tolerant, acidophilic and highly stable endoglucanase is prospectively to be exploited as the advanced enzymatic product for diverse industrial applications.  相似文献   

14.
Production of extracellular xylanase from Bacillus sp. GRE7 using a bench-top bioreactor and solid-state fermentation (SSF) was attempted. SSF using wheat bran as substrate and submerged cultivation using oat-spelt xylan as substrate resulted in an enzyme productivity of 3,950 IU g−1 bran and 180 IU ml−1, respectively. The purified enzyme had an apparent molecular weight of 42 kDa and showed optimum activity at 70°C and pH 7. The enzyme was stable at 60–80°C at pH 7 and pH 5–11 at 37°C. Metal ions Mn2+ and Co2+ increased activity by twofold, while Cu2+ and Fe2+ reduced activity by fivefold as compared to the control. At 60°C and pH 6, the K m for oat-spelt xylan was 2.23 mg ml−1 and V max was 296.8 IU mg−1 protein. In the enzymatic prebleaching of eucalyptus Kraft pulp, the release of chromophores, formation of reducing sugars and brightness was higher while the Kappa number was lower than the control with increased enzyme dosage at 30% reduction of the original chlorine dioxide usage. The thermostability, alkali-tolerance, negligible presence of cellulolytic activity, ability to improve brightness and capacity to reduce chlorine dioxide usage demonstrates the high potential of the enzyme for application in the biobleaching of Kraft pulp.  相似文献   

15.
This study reports the purification and biochemical characterization of a raw starch-digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. (strain PizzoT). The molecular weight was estimated to be 58 kDa by SDS–PAGE. The enzyme was highly active over a wide range of pH from 4.0–10.0. The optimum temperature of the enzyme was 70°C. It showed extreme thermostability in the presence of Ca2+, retaining 50% of its initial activity after 90 h at 70°C. The enzyme efficiently hydrolyzed 20% (w/v) of raw starches, concentration normally used in starch industries. The α-amylase showed an high stability in presence of many organic solvents. In particular the residual activity was of 73% in presence of 15% (v/v) ethyl alcohol, which corresponds to ethanol yield in yeast fermentation process. By analyzing its complete amyA gene sequence (1,542 bp), the enzyme was proposed to be a new α-amylase.  相似文献   

16.
A novel thermostable, halostable carboxymethylcellulase (CMCase) from a marine bacterium Bacillus licheniformisAU01 was purified 10.4-fold with 18% yield with a specific activity of 88.43 U/mg and the molecular weight was estimated as 37 kDa. The enzyme was optimally active at pH 9–10 and temperature 50–60°C and it was most stable up to pH 12 and 20–30% of NaCl concentration. The enzyme activity was reduced when treated with Hg2+, Fe2+ and EDTA and stimulated by Co2+, Mn2+, Mg2+ and Ca2+. Various cationic, anionic detergents and commercial detergents were not much affected CMCase activity.  相似文献   

17.
A moderately halophilic bacterium LY6 with high proteolytic activity was isolated. Biochemical and physiological characterization, along with 16S rDNA sequence analysis placed the isolate in the genus Halobacillus. The salinity of the culture medium strongly influenced the proteinase production of LY6. Maximum enzyme production was observed in the medium containing 5% Na2SO4 or 10% NaCl. Proteinase production was synchronized with bacterial growth and reached a maximum level during the mid-stationary phase. Enzyme purification was carried out by a simple approach including a combination of ammonium sulfate precipitation and Sephacryl S-100 gel filtration chromatography. SDS-PAGE and gelatin zymography analysis revealed it was a monomer with high molecular weight of 69 kDa. Optimal proteinase activity was obtained at pH 10.0, 40°C, and 10% NaCl. It was high active over broad temperature (30–80°C), pH (6.0–12.0), and NaCl concentration (0–25%) ranges, indicating its thermostable, alkali-stable, and halotolerant nature. Moreover, the enzyme activity was markedly enhanced by Ca2+ and Cu2+, but strongly inhibited by EDTA, PAO, and DEPC, indicating that it probably was a metalloproteinase with cysteine and histidine residues located in its active site.  相似文献   

18.
Linoleic acid isomerase from Lactobacillus delbrueckii subsp. bulgaricus 1.1480 was purified by DEAE ion-exchange chromatography and gel filtration chromatography. An overall 5.1% yield and purification of 93-fold were obtained. The molecular weight of the purified protein was ~41 kDa which was analyzed by SDS-PAGE. The purified enzyme was immobilized on palygorskite modified with 3-aminopropyltriethoxysilane. The immobilized enzyme showed an activity of 82 U/g. The optimal temperature and pH for the activity of the free enzyme were 30 °C and pH 6.5, respectively; whereas those for the immobilized enzyme were 35 °C and pH 7.0, respectively. The immobilized enzyme was more stable than the free enzyme at 30–60 °C, and the operational stability result showed that more than 85% of its initial activity was retained after incubation for 3 h. The K m and V max values of the immobilized enzyme were found to be 0.0619 mmol l−1 and 0.147 mmol h−1 mg−1, respectively. The immobilized enzyme had high operational stability and retained high enzymatic activity after seven cycles of reuse at 37 °C.  相似文献   

19.
A glucoamylase from Aspergillus niveus was produced by submerged fermentation in Khanna medium, initial pH 6.5 for 72 h, at 40°C. The enzyme was purified by DEAE-Fractogel and Concanavalin A-Sepharose chromatography. The enzyme showed 11% carbohydrate content, an isoelectric point of 3.8 and a molecular mass of 77 and 76 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Bio-Sil-Sec-400 gel filtration, respectively. The pH optimum was 5.0–5.5, and the enzyme remained stable for at least 2 h in the pH range of 4.0–9.5. The temperature optimum was 65°C and retained 100% activity after 240 min at 60°C. The glucoamylase remained completely active in the presence of 10% methanol and acetone. After 120 min hydrolysis of starch, glucose was the unique product formed, confirming that the enzyme was a glucoamylase (1,4-alpha-d-glucan glucohydrolase). The K m was calculated as 0.32 mg ml−1. Circular dichroism spectroscopy estimated a secondary structure content of 33% α-helix, 17% β-sheet and 50% random structure, which is similar to that observed in the crystal structures of glucoamylases from other Aspergillus species. The tryptic peptide sequence analysis showed similarity with glucoamylases from A. niger, A. kawachi, A. ficcum, A. terreus, A. awamori and A. shirousami. We conclude that the reported properties, such as solvent, pH and temperature stabilities, make A. niveus glucoamylase a potentially attractive enzyme for biotechnological applications.  相似文献   

20.
A feather-degrading strain of Pseudomonas aeruginosa KS-1 was used in the present study. Its crude cell-free fermentation broth completely degraded chicken feather within 12 h, in the absence of disulphide reductase activity. Keratinase from its extracellular broth was purified and characterized, assuming that it would be a potential β-keratin-degrading enzyme with prospective applications in degradation of β-plaques of prions. The keratinase was purified by using Q-Sepharose anion exchange chromatography and its molecular weight, as determined by SDS–PAGE analysis, was 45 kDa. It was an alkaline, serine protease with pH and temperature optima of 9 and 60°C, respectively. The enzyme was highly thermostable with a t 1/2 > 2 h at 80°C and had a very high K to C (keratinolytic to caseinolytic) ratio of 2.5. Besides feather keratin, it also hydrolyzed a variety of other complex substrates including fibrin, gelatin and meat protein. Its activity on synthetic substrates revealed that it efficiently cleaves them in the order phenylalanine > lysine > alanine > leucine p-nitroanilides. It also cleaved insulin B chain between Val12-Glu13, Ala14-Leu15, Gly20-Glu21 and Arg22-Gly23 residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号