首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of hepatocytes with islet activating protein (pertussis toxin) from Bordetella pertussis blocked the ability of insulin to inhibit adenylate cyclase activity both in broken plasma membranes and in intact hepatocytes. Such treatment of intact hepatocytes with pertussis toxin did not prevent insulin from activating the peripheral plasma membrane cyclic AMP phosphodiesterase although it did inhibit the ability of insulin to activate the 'dense-vesicle' cyclic AMP phosphodiesterase. The ability of glucagon pretreatment of hepatocytes to block insulin's activation of the plasma membrane cyclic AMP phosphodiesterase was abolished in pertussis toxin-treated hepatocytes. It is suggested that the ability of insulin to manipulate cyclic AMP concentrations by inhibiting adenylate cyclase and activating the plasma membrane and 'dense-vesicle' cyclic AMP phosphodiesterases involves interactions with the guanine nucleotide regulatory protein system occurring in liver plasma membranes.  相似文献   

2.
Pertussis toxin was purified approx. 1800-fold from pertussis vaccine. Administration of as little as 1 microgram of toxin/100 g body weight to hamsters markedly decreased the sensitivity of their adipocytes to agents that inhibit adenylate cyclase through receptor-mediated, GTP-dependent mechanisms such as alpha 2-adrenergic amines, prostaglandins, phenylisopropyladenosine and nicotinic acid. On the contrary, the inhibitory effect of 2',5'-dideoxyadenosine on cyclic AMP accumulation was not affected by the toxin. Activation of adenylate cyclase by isoproterenol, ACTH or forskolin was not diminished by the toxin but the maximum cyclic AMP accumulation was consistently increased. Furthermore, the dose-response curves for ACTH and forskolin were clearly shifted to the left in adipocytes from toxin-treated hamsters as compared to control adipocytes. It is concluded that pertussis toxin blocks the transfer of inhibitory information from the receptors to adenylate cyclase.  相似文献   

3.
Previous studies in Chinese-hamster fibroblasts (CCL39 line) indicate that an important signalling pathway involved in thrombin's mitogenicity is the activation of a phosphoinositide-specific phospholipase C, mediated by a pertussis-toxin-sensitive GTP-binding protein (Gp). The present studies examine the effects of thrombin on the adenylate cyclase system and the interactions between the two signal transduction pathways. We report that thrombin exerts two opposite effects on cyclic AMP accumulation stimulated by cholera toxin, forskolin or prostaglandin E1. (1) Low thrombin concentrations (below 0.1 nM) decrease cyclic AMP formation. A similar inhibition is induced by A1F4-, and both thrombin- and A1F4- -induced inhibitions are abolished by pertussis toxin. (2) Increasing thrombin concentration from 0.1 to 10 nM results in a progressive suppression of adenylate cyclase inhibition and in a marked enhancement of cyclic AMP formation in pertussis-toxin-treated cells. A similar stimulation is induced by an active phorbol ester, and thrombin-induced potentiation of adenylate cyclase is suppressed by down-regulation of protein kinase C. Therefore, we conclude that (1) the inhibitory effect of thrombin on adenylate cyclase is the direct consequence of the activation of a pertussis-toxin-sensitive inhibitory GTP-binding protein (Gi) possibly identical with Gp, and (2) the potentiating effect of thrombin on cyclic AMP formation is due to stimulation of protein kinase C, as an indirect consequence of Gp activation. Our results suggest that the target of protein kinase C is an element of the adenylate cyclase-stimulatory GTP-binding protein (Gs) complex. At low thrombin concentrations, activation of phospholipase C is greatly attenuated by increased cyclic AMP, leading to predominance of the Gi-mediated inhibition.  相似文献   

4.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
In vivo microdialysis of cyclic AMP from prefrontal cortex complemented by ex vivo measures was used to investigate the possibility that lithium produces functional changes in G proteins that could account for its effects on adenylate cyclase activity. Four weeks of lithium administration (serum lithium concentration of 0.85 +/- 0.05 mM; n = 11) significantly increased the basal cyclic AMP content in dialysate from prefrontal cortex of anesthetized rats. Forskolin infused through the probe increased dialysate cyclic AMP, but the magnitude of this increase was unaffected by chronic lithium administration. Inactivation of the inhibitory guanine nucleotide binding protein Gi with pertussis toxin increased dialysate cyclic AMP in control rats, as did stimulation with cholera toxin (which activates the stimulatory guanine nucleotide binding protein Gs). The effect of pertussis toxin was abolished following chronic lithium, whereas the increase in cyclic AMP after cholera toxin was enhanced. In vitro pertussis toxin-catalyzed ADP ribosylation of alpha i (and alpha o) was increased by 20% in prefrontal cortex from lithium-treated rats, but the alpha i and alpha s contents (as determined by immunoblot) as well as the cholera toxin-catalyzed ADP ribosylation of alpha s were unchanged. Taken together, these results suggest that chronic lithium administration may interfere with the dissociation of Gi into its active components and thereby remove a tonic inhibitory influence on adenylate cyclase, with resultant enhanced basal and cholera toxin-stimulated adenylate cyclase activity.  相似文献   

6.
Pertussis toxin treatment modifies opiate action in the rat brain striatum   总被引:5,自引:0,他引:5  
In this report we present evidence that a guanine nucleotide regulatory protein, Gi, mediates opiate action in the rat brain striatum. Opiates inhibit basal adenylate cyclase activity in rat brain striatum. This effect on adenylate cyclase is dose-dependently attenuated by pretreatment of membranes with pertussis toxin, which ADP-ribosylates a protein with a molecular mass of 41,000 daltons. This protein co-migrates with the GTP-binding subunit of Gi, which mediates inhibition of adenylate cyclase. Several brain regions were compared for the extent of radiolabeling and effects on adenylate cyclase activity. Although Gi was found in each region examined, opiate inhibition of adenylate cyclase is clearly seen only in the striatum.  相似文献   

7.
Somatostatin inhibits both forskolin and (-) isoproterenol-stimulated cyclic AMP accumulation in AtT-20 cells. Pretreatment of these cells with pertussis toxin prevents somatostatin's inhibitory effects on cyclic AMP production. This pretreatment also enhances the cyclic AMP response to forskolin and (-) isoproterenol without affecting basal cyclic AMP levels. The blockade of somatostatin's inhibitory effect was dependent both on the time of preincubation and concentration of pertussis toxin used. The rise in forskolin-stimulated cyclic AMP formation following pertussis toxin treatment preceded the blockade of somatostatin's inhibitory actions. The results suggest that somatostatin acts through an inhibitory guanine nucleotide regulatory protein to affect adenylate cyclase activity.  相似文献   

8.
The role of cyclic AMP in the regulation of enzyme secretion by the rabbit pancreas has been investigated by means of forskolin, an activator of the catalytic subunit of adenylate cyclase. Forskolin increases the cyclic AMP level in isolated pancreatic acini in a dose-dependent way. Basal amylase release, however, remains unchanged. Forskolin potentiates the increase in amylase release induced by the C-terminal octapeptide of cholecystokinin (CCK-8). Potentiation is already apparent at hormone concentrations which are only marginally effective in stimulating amylase secretion. CCK-8 alone does not raise the cellular cAMP level, but it potentiates the forskolin-induced increase. In relative terms, potentiation is higher with decreasing concentration of forskolin. These results indicate that cAMP alone does not play a direct role in CCK-stimulated pancreatic enzyme secretion in the rabbit, but it potentiates enzyme secretion already stimulated through a cAMP-independent process.  相似文献   

9.
Release of [14C]glucosamine-labelled mucins was studied in vitro using well-characterised preparations of rat submandibular acini. Mucin release was stimulated by forskolin, an activator of the catalytic subunit of adenylate cyclase, and 3-isobutyl-1-methylxanthine (IBMX), a cyclic nucleotide phosphodiesterase inhibitor. Both stimulated in a dose-dependent manner to the same maximum as that seen with isoproterenol. Neither forskolin nor IBMX added in the presence of isoproterenol increased secretion above the maximum in response to isoproterenol alone, suggesting a similar mechanism of action, mediated by cyclic AMP. Prior exposure of acini to isoproterenol (10 microM) for 45 min, followed by washout resulted in (a) persistent increase in basal secretion which was abolished by propranolol and (b) reduced stimulation of mucin secretion in response to either a second isoproterenol challenge, noradrenaline or forskolin. Thus, exposure of rat submandibular acini in vitro desensitizes the cells to subsequent stimulation. Although this mimics the decreased beta-adrenergic secretory responses seen in submandibular cells from cystic fibrosis patients, results suggest that the isoproterenol-induced desensitization is at the level of beta-receptor and adenylate cyclase, rather than distal to cyclic AMP.  相似文献   

10.
The regulation of adenylate cyclase has been analyzed in normal rat thyroid cells as well as in the same cells transformed by the v-ras-k oncogene. In both cell types the adenylate cyclase complex consists of the two GTP-binding proteins, Gi and Gs, as demonstrated by the specific ADP-ribosylation induced by pertussis and cholera toxin, respectively. The response of adenylate cyclase of the transformed cells to forskolin, pertussis toxin and cholera toxin is attenuated with respect to the control cell line. The thyrotropic hormone (TSH), that acts on normal thyroid cells in culture as a growth factor by stimulating the adenylate cyclase activity, is not able to induce DNA synthesis nor does it stimulate adenylate cyclase in v-ras-k transformed cells.  相似文献   

11.
Forskolin and vasoactive intestinal polypeptide (VIP) were shown to increase cyclic AMP accumulation in a human neuroblastoma cell line, SK-N-SH cells. The alpha 2-adrenergic agonist UK 14304 decreased forskolin-stimulated cyclic AMP levels by 40 +/- 2%, with an EC50 of 83 +/- 20 nM. This response was blocked by pretreatment with pertussis toxin (PT) (EC50 = 1 ng/ml) or by the alpha 2-antagonists yohimbine, idazoxan, and phentolamine. Antagonist IC50 values were 0.3 +/- 0.1, 2.2 +/- 0.3, and 1.4 +/- 0.1 microM, respectively. This finding suggests the presence of normal inhibitory coupling of SK-N-SH cell alpha 2-adrenergic receptors to adenylate cyclase via the inhibitory GTP-binding protein species, Gi. Muscarinic receptors in many target cell types are coupled to inhibition of adenylate cyclase. However, in SK-N-SH cells, muscarinic agonists synergistically increased (67-95%) the level of cyclic AMP accumulation elicited by forskolin or VIP. EC50 values for carbamylcholine (CCh) and oxotremorine facilitation of the forskolin response were 1.2 +/- 0.2 and 0.3 +/- 0.1 microM, respectively. Pharmacological studies using the muscarinic receptor subtype-preferring antagonists 4-diphenylacetoxy-N-methylpiperidine, pirenzepine, and AF-DX 116 indicated mediation of this response by the M3 subtype. IC50 values were 14 +/- 1, 16,857 +/- 757, and 148,043 +/- 16,209 nM, respectively. CCh-elicited responses were unaffected by PT pretreatment. Muscarinic agonist binding affinity was indirectly measured by the ability of CCh to compete for [3H]quinuclidinyl benzilate binding sites on SK-N-SH cell membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The involvement of G regulatory proteins in muscarinic receptor signal transduction was examined in electrically permeabilized rat submandibular acinar cells. The guanine nucleotide analog, GTP gamma S, caused the dose dependent hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to release IP3. This response was insensitive to pertussis toxin treatment and was duplicated by NaF but not by GDP beta S. Enhanced IP3 synthesis was observed with a combination of GTP gamma S and carbachol. Exogenous IP3, as well as carbachol and GTP gamma S, provoked the release of sequestered 45Ca2+ from non-mitochondrial stores. In intact cells, carbachol significantly reduced the level of cyclic AMP induced by the beta-adrenergic agonist, isoproterenol, to 69% of its normal value. Pertussis toxin abolished this inhibitory action of carbachol on cyclic nucleotide levels. These results suggest that muscarinic receptors are coupled to two separate G regulatory proteins in submandibular mucous acini-the pertussis toxin-insensitive Gp of the phosphoinositide transduction pathway associated with elevated cytosolic calcium levels, and the pertussis toxin-sensitive Gi inhibitory protein of the adenylate cyclase complex.  相似文献   

13.
In rat osteosarcoma (ROS 17/2.8) cells, which express osteoblastic features in culture, basic fibroblast growth factor (bFGF) reduces the level of alkaline phosphatase, type I collagen, and osteocalcin mRNA and increases osteopontin mRNA, independent of growth stimulation. The fibroblast growth factor (FGF) effects are dose dependent (EC50 about 6 pM) and are detected 24 h after addition of the growth factor. bFGF also reduces parathyroid hormone-stimulatable adenylate cyclase and alkaline phosphatase activity in these cells. Concomitant treatment with pertussis toxin (20 ng/ml) opposes the FGF effects. Although cyclic AMP elevating agents mimic pertussis toxin action on some parameters, they produce opposite effects on others, indicating that antagonism between pertussis toxin and bFGF is not mediated by cyclic AMP. bFGF caused a small reduction in steady state NAD-dependent ADP-ribosylation and had no detectable effects on the steady-state levels of the Gi alpha (alpha subunit of the inhibitory G protein) 1, 2, and 3, visualized with specific antibodies in these cells. Although the site of interaction of pertussis toxin and FGF remains to be determined, the findings presented here suggest separate control of growth and differentiation by bFGF and show that pertussis toxin treatment can modulate differentiation in these cells, presumably via Gi proteins.  相似文献   

14.
To identify the role of ras oncogene and p21 in the coupling mechanism of GTP-binding proteins to adenylate cyclase, we used v-Ki-ras transformed NIH/3T3 fibroblast cells. In the previous study, we investigated that NaF, cholera toxin and forskolin remarkably enhanced the adenylate cyclase activity in transformed cells compared to normal NIH/3T3 cells. In the present study, adenylate cyclase was more enhanced by GTP gamma S in transformed cells than in normal cells. It was considered that p21 plays enhancing role in coupling of GTP-binding proteins to adenylate cyclase. Further, as measured by the degree of [32P] ADP-ribosylation of GTP-binding proteins by cholera toxin and pertussis toxin respectively, the amount of Gs (46 kDa) was almost equal in both cells, while the amount of Gi (41 kDa) in transformant was about one third of that in normal cells. This difference seems to be reflected in either the biological situations or the quantities of Gi. Our data suggest that v-Ki-ras transformation resulted in the decrease of Gi protein so that the inhibitory regulation on adenylate cyclase relatively becomes low and then stimulatory influence of Gs seems to be enhanced.  相似文献   

15.
Abstract: The synthesis of the neuropeptide precursor proenkephalin was measured in bovine adrenal Chromaffin cells following radiolabeling with [35S]methionine. Treatment of Chromaffin cells with pertussis toxin (100 ng/ml) approximately doubled proenkephalin synthesis without altering total protein synthesis. Pertussis toxin pretreat-ment also increased proenkephalin synthesis in chromaf-fin cells exposed to vasoactive intestinal peptide (VIP) and 3-isobutyl-1 -methylxanthine (IBMX). Combinations of IBMX plus nicotine, VIP, or histamine also synergistically enhanced proenkephalin synthesis, with no further elevation when the cells were also pretreated with pertussis toxin. The action of forskolin, a direct activator of adenyl-ate cyclase, on proenkephalin synthesis was similarly potentiated by pertussis toxin or IBMX, presumably reflecting the abilities of both the toxin and this phosphodiester-ase inhibitor to enhance the cyclic AMP response to forskolin. In contrast, increased synthesis of proenkephalin in response to phorbol esters was not affected by pertussis toxin treatment. These results suggest that pertussis toxin potentiates proenkephalin synthesis primarily through inactivation of guanine nucleotide-binding proteins that inhibit adenylate cyclase, although other signaling pathways may also be involved.  相似文献   

16.
The mechanism by which alpha 2-adrenergic agonists inhibit exocytosis was investigated in electrically permeabilized insulin secreting RINm5F cells. In this preparation alpha 2-adrenoceptors remain coupled to adenylate cyclase, since basal- and forskolin-stimulated cyclic AMP production was lowered by epinephrine and clonidine by 30-50%. Cyclic AMP levels did not correlate with the rate of insulin secretion. Thus, at low Ca2+, forskolin enhanced cyclic AMP levels 5-fold without eliciting secretion, and Ca2+-stimulated secretion was associated with decreased cyclic AMP accumulation. Epinephrine (plus propranolol) inhibited Ca2+-induced insulin secretion in a GTP-dependent manner. The maximal inhibition (43%) occurred at 500 microM GTP. Clonidine also inhibited Ca2+-stimulated secretion. Replacement of GTP by GDP or by the nonhydrolyzable GTP analog guanosine 5'-(3-O-thio)triphosphate as well as treatment of the cells with pertussis toxin prior to permeabilization abolished epinephrine inhibition of insulin secretion. Pertussis toxin did not affect Ca2+-stimulated secretion. Insulin release stimulated by 1,2-didecanoyl glycerol was also lowered by epinephrine suggesting an effect distal to the activation of protein kinase C (Ca2+/phospholipid-dependent enzyme). These results taken together with the ability of epinephrine to inhibit ionomycin-induced insulin secretion in intact cells suggest that alpha 2-adrenergic inhibition is distal to the generation of second messengers. A model is proposed for alpha 2-adrenoceptor coupling to two effector systems, namely the adenylate cyclase and the exocytotic site in insulin-secreting cells.  相似文献   

17.
Luteinizing-hormone (LH)-stimulated cyclic AMP production in rat testis Leydig cells was desensitized by both LH and 12-O-tetradecanoylphorbol 13-acetate (TPA). However, TPA, but not LH, enhanced the subsequent response to cholera toxin. Treatment of the cells with pertussis toxin potentiated cyclic AMP production in both control and LH-desensitized cells, but did not potentiate further the responses obtained by TPA pretreatment. The results implicate the presence of an inhibitory GTP-binding protein (Gi), which may be inhibited by TPA. The presence of a Gi-like protein within the plasma membrane of Leydig cells was demonstrated by pertussis-toxin-catalysed [32P]ADP-ribosylation of a Mr-40000-41000 protein.  相似文献   

18.
The muscarinic stimulation of adenylate cyclase activity in rat olfactory bulb was characterized, with the aim of elucidating the nature of the molecular mechanism involved. Carbachol (CCh) stimulated the enzyme activity in either crude or purified cell membrane preparations and increased cyclic AMP accumulation in miniprisms of olfactory bulb. The CCh stimulation of adenylate cyclase activity displayed a fast onset and was rapidly reversed by addition of atropine. The stimulation was associated with an increase in the apparent Vmax of the enzyme, with no change in the Km for Mg-ATP. The affinity of the enzyme for Mg2+ was enhanced by CCh. The muscarinic effect required GTP at concentrations higher than those needed for enzyme stimulation with either l-isoproterenol or vasoactive intestinal peptide. Moreover, contrary to the beta-adrenergic stimulation, the muscarinic effect disappeared when guanosine 5'-O-(3'-thiotriphosphate) was substituted for GTP. In vivo treatment of olfactory bulbs with pertussis toxin completely prevented the muscarinic stimulation of adenylate cyclase, whereas cholera toxin was without effect. These results indicate that in rat olfactory bulb muscarinic receptors increase adenylate cyclase activity by interacting with a pertussis toxin-sensitive GTP-binding protein different from the stimulatory GTP-binding protein.  相似文献   

19.
The effects of pertussis toxin on the steady-state levels of G-protein alpha- and beta-subunits were investigated both in vitro and in vivo. The steady-state level Go alpha, a major substrate for pertussis toxin-catalyzed ADP-ribosylation, was unaltered by pertussis toxin treatment for periods up to 100 h for 3T3-L1 cells in culture or up to 3 days in vivo. In 3T3-L1 cells pertussis toxin treatment did not alter levels of Gs alpha-subunits; in S49 cells the level of Gs alpha-subunits declined moderately following by pertussis toxin treatment. The steady-state levels of G beta-subunits, in contrast, were found to decline to less than 50% of the normal cellular complement following pertussis toxin treatment in vitro and in vivo. Inhibitory control of adenylate cyclase, pertussis toxin-catalyzed ADP-ribosylation of Gi alpha and Go alpha, and the GTP-dependent shift in agonist-specific binding to beta-adrenergic receptors were attenuated or abolished within 5 h of pertussis toxin treatment, representing "early" effects of the toxin. Stimulatory regulation of adenylate cyclase, in contrast, displayed a progressive enhancement that was first observed 4 h after pertussis toxin treatment, increasing thereafter up until 100 h, the last time point measured. This progressive enhancement of the stimulatory pathway of adenylate cyclase was not manifest at the level of stimulatory receptors, since the Kd and Bmax for one such receptor, the beta-adrenergic receptor, were shown to be unaltered in toxin-treated cells. Furthermore, the potentiation of stimulation of adenylate cyclase was observed in cells stimulated by the beta-adrenergic agonist isoproterenol and PGE1 alike. The progressive enhancement of the stimulatory pathway correlated best with the decline in G beta-subunit levels that occurs following pertussis intoxication. The changes in both of these parameters occur "late" (12-48 h), as compared to the early events that occur within 5 h. Pertussis toxin action appears to be composed of two, temporally distinct, groups of effects. Pertussis toxin-catalyzed ADP-ribosylation of G alpha-subunits, attenuation of the inhibitory regulation of adenylate cyclase, and attenuation of the ability of GTP to induce an agonist-specific shift in receptor affinity are members of the early group of effects. The second group of late effects includes the decline in G beta-subunit levels and the progressive enhancement of the stimulatory pathway of adenylate cyclase. This enhanced stimulatory control at these later times cannot be explained by the attenuation of the inhibitory pathway occurring early, but rather appears as G beta-subunit levels decline.  相似文献   

20.
The stimulation of osteocalcin synthesis by human osteoblast-like cells in response to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is antagonised by several bone regulatory agents. We have shown that agents which activate adenylate cyclase inhibit this action of 1,25(OH)2D3 on human osteoblast-like cells. Activation of adenylate cyclase, either via the stimulatory GTP-binding protein using cholera toxin, or directly at the catalytic via the stimulatory GTP-binding protein using cholera toxin, or directly at the catalytic subunit using forskolin, results in a suppression of osteocalcin synthesis. Whilst the activation of adenylate cyclase induces this inhibitory response, neither exogenous dibutyryl cyclic AMP nor the phosphodiesterase inhibitor, IBMX, exerted any apparent effect on the production of osteocalcin. The tumour promoting phorbol ester, 4 beta-phorbol 12,13-dibutyrate, also inhibited 1,25(OH)2D3-stimulated osteocalcin production. This was not apparent in response to the non-tumour promoting phorbol ester 4 beta-phorbol suggesting the involvement of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号