首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
End product inhibition can be reduced by the in situ removal of inhibitory fermentation products as they form. Extractive fermentation, in which an immiscible organic solvent is added to the fermentor in order to extract inhibitory products, was applied to the acetone-butanol fermentation. Six solvents or solvent mixtures were tested in batch extractive fermentations: kerosene, 30 wt% tetradecanol in kerosene, 50 wt% dodecanol in kerosene, oleyl alcohol, 50 wt% oleyl alcohol in a decane fraction and 50 wt% oleyl alcohol in benzyl benzoate. The best results were obtained with oleyl alcohol or a mixture of oleyl alcohol and benzyl benzoate. In normal batch fermentation of Clostridium acetobutylicum, glucose consumption is limited to about 80 kg/m3 due to the accumulation of butanol in the broth. In extractive fermentation using oleyl alcohol or a mixture of oleyl alcohol and benzyl benzoate, over 100 kg/m3 of glucose can be fermented. Removal of butanol from the broth as it formed also increased the rate of butanol production. Maximum volumetric butanol productivity was increased by as much as 60% in extractive fermentation compared to batch fermentation. Butanol productivities obtained in extractive fermentation compare favorably with other in situ product removal fermentations.  相似文献   

2.
《Process Biochemistry》2010,45(12):1899-1903
Biobutanol has currently attracted considerable attention as an alternative biofuel to the petroleum-derived fuel due to several advantages including high energy content, low water absorption and easy application to the existing gasoline infrastructure. However, its production has still faced many obstacles to overcome including lack of energy-efficient butanol separation process from fermentation broth. To solve this issue, the extraction behavior of butanol from aqueous media into a variety of imidazolium-based ionic liquids (ILs) was investigated by liquid–liquid extraction. To understand the effect of ILs properties, the solvent characteristics of ILs such as mutual solubility of feed solvent (water) and extraction solvent (IL), distribution coefficient of butanol between water and IL, selectivity, and extraction efficiency were correlated with hydrophobicity and polarity of ILs. The butanol distribution between ILs and water strongly depends on the hydrophobicity of anions of ILs followed by the hydrophobicity of cations of ILs. On the other hand, butanol extraction efficiency and selectivity depend on the polarity of ILs. Considering extraction efficiency and selectivity, [Tf2N]-based ILs among the tested ILs showed to be the best extract solvent for the recovery of butanol from aqueous media. Among the studied ILs, [Omim][Tf2N] showed the highest butanol distribution coefficient (1.939), selectivity (132) and extraction efficiency (74%) at 323.15 K, respectively.  相似文献   

3.
The productivity of the acetone-butanol fermentation was increased by continuously removing acetone and butanol from the fermentation broth during fed-batch culture. Whole broth containing viable cells of Clostridium acetobutylicum was cycled to a Karr reciprocating plate extraction column in which acetone and butanol were extracted into oleyl alcohol flowing counter-currently through the column. By continuously removing these toxic metabolites from the broth, end product inhibition was reduced, and a concentrated feed solution containing 300 g/L glucose was fermented at an overall butanol productivity of 1.0 g/L h, 70% higher than the productivity of normal batch fermentation. The continuous extraction process provides flexible operation and lends itself to process scale-up.  相似文献   

4.
PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.  相似文献   

5.
A method for measuring the ethanol concentration in a yeast culture broth was developed using both microtubes and a 96-deepwell microplate. The strategy involved first the solvent extraction of ethanol from the yeast culture broth and measurements of the ethanol concentration using the dichromate oxidation method. Particular focus was made on selecting the extraction solvent as well as determining the measurable range of ethanol concentrations using this solvent extraction-dichromate oxidation method. This method was developed as an assay format in 2.0-ml microtubes and 1.2-ml 96-deepwell microplates, and the ethanol concentration in the batch cultures and fed-batch fermentations was measured. Tri-n-butyl phosphate [non-alcoholic solvent, density = 0.9727, solubility in water = 0.028% (w/v)] was used for solvent extraction when measuring the ethanol concentration from the yeast culture broth. The maximum detectable ethanol concentration was 8% (v/v) when 10 g potassium dichromate in 100 ml of 5 M sulfuric acid was used. The concentrations determined from the solvent extraction-dichromate oxidation methods were remarkably similar to those of gas chromatography in which samples were prepared from seven experiments, such as four batch cultures and three fed-batch fermentations.  相似文献   

6.

Background

Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol.

Results

KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g?·?L-1?·?h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture.

Conclusions

Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency.  相似文献   

7.
A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88-68.32 and flux values of 158.7-215.4 g m(-)(2) h(-)(1) were achieved. Higher flux values (400 g m(-)(2) h(-)(1)) were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation-recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2-3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol (and small concentrations of acids), it is suggested that distillation be used for further purification.  相似文献   

8.
Solvent screening for in situ liquid extraction of products from acetone-butanol-ethanol (ABE) fermentation was carried out, taking into account biological parameters (biocompatibility, bioavailability, and product yield) and extraction performance (partition coefficient and selectivity) determined in real fermentation broth. On the basis of different solvent characteristics obtained from literature, 16 compounds from different chemical families were selected and experimentally evaluated for their extraction capabilities in a real ABE fermentation broth system. From these compounds, nine potential solvents were also tested for their biocompatibility towards Clostridium acetobutylicum. Moreover, bioavailability and differences in substrate consumption and total n-butanol production with respect to solvent-free fermentations were quantified for each biocompatible solvent. Product yield was enhanced in the presence of organic solvents having higher affinity for butanol and butyric acid. Applying this methodology, it was found that the Guerbet alcohol 2-butyl-1-octanol presented the best extracting characteristics (the highest partition coefficient (6.76) and the third highest selectivity (644)), the highest butanol yield (27.4 %), and maintained biocompatibility with C. acetobutylicum.  相似文献   

9.
Anaerobic bacteria such as the solventogenic clostridia can ferment a wide range of carbon sources (e.g., glucose, galactose, cellobiose, mannose, xylose, and arabinose) to produce carboxylic acids (acetic and butyric) and solvents such as acetone, butanol, and ethanol (ABE). The fermentation process typically proceeds in two phases (acidogenic and solventogenic) in a batch mode. Poor solvent resistance by the solventogenic clostridia and other fermenting microorganisms is a major limiting factor in the profitability of ABE production by fermentation. The toxic effect of solvents, especially butanol, limits the concentration of these solvents in the fermentation broth, limiting solvent yields and adding to the cost of solvent recovery from dilute solutions. The accepted dogma is that toxicity in the ABE fermentation is due to chaotropic effects of butanol on the cell membranes of the fermenting microorganisms, which poses a challenge for the biotechnological whole-cell bio-production of butanol. This mini-review is focused on (1) the effects of solvents on inhibition of cell metabolism (nutrient transport, ion transport, and energy metabolism); (2) cell membrane fluidity, death, and solvent tolerance associated with the ability of cells to tolerate high concentrations of solvents without significant loss of cell function; and (3) strategies for overcoming poor solvent resistance in acetone and butanol-producing microorganisms.  相似文献   

10.
In situ butanol recovery fermentation has been intensively studied as an effective alternative to conventional butanol production, which is limited due to the cellular toxicity of butanol. However, the low biocompatibility of adsorbents often leads to failure of in situ recovery fermentations. In this study, Clostridium beijerinckii NCIMB 8052 was cultured in flasks without shaking and in situ recovery fermentation was performed by using an adsorbent L493. The amounts of acetone, butanol, and ethanol (ABE) increased by 34.4 % in the presence of the adsorbent. In contrast, cell growth and production of organic acids and ABE were retarded in the 7-L batch fermentations with in situ butanol recovery. Cell damage occurred in the fermentor upon agitation in the presence of the adsorbent, unlike in static flask cultures with in situ recovery. Ex situ recovery fermentation using circulation of fermentation broth after mid-exponential phase of cell growth was developed to avoid adsorbent-cell incompatibility. No apparent cell damage was observed and 25.7 g/L of ABE was produced from 86.2 g/L glucose in the fed-batch mode using 7 L fermentors. Thus, ex situ recovery fermentation with C. beijerinckii is effective for enhancing butanol fermentation.  相似文献   

11.
本研究以玉米秸秆水解液为原料,通过萃取发酵技术生产燃料丁醇,以提高丁醇产量,降低生产成本。通过对萃取剂的筛选与条件优化,确定纤维丁醇发酵的萃取剂为油醇,添加时间为发酵0 h,添加比例为1:1 (V/V)。该条件下发酵32 g/L糖浓度的玉米秸秆水解液,丁醇和总溶剂产量分别为3.28 g/L和4.72 g/L,比对照分别提高958.1%和742.9%。以D301树脂脱毒后5%总糖浓度的玉米秸秆水解液进行丁醇萃取发酵,丁醇和总溶剂产量分别达到10.34 g/L和14.72 g/L,发酵得率为0.31 g/g,与混合糖发酵结果相当。研究结果表明萃取发酵技术能够显著提高原料的利用率和丁醇产量,为纤维丁醇工业化生产提供了技术支撑。  相似文献   

12.
In-situ recovery of butanol during fermentation   总被引:1,自引:0,他引:1  
End-product inhibition in the acetone-butanol fermentation was reduced by using extractive fermentation to continuously remove acetone and butanol from the fermentation broth. In situ removal of inhibitory products from Clostridium acetobutylicum resulted in increased reactor productivity; volumetric butanol productivity increased from 0.58 kg/(m3h) in batch fermentation to 1.5 kg/(m3h) in fed-batch extractive fermentation using oleyl alcohol as the extraction solvent. The use of fed-batch operation allowed glucose solutions of up to 500 kg/m3 to be fermented, resulting in a 3.5- to 5-fold decrease in waste water volume. Butanol reached a concentration of 30–35 kg/m3 in the oleyl alcohol extractant at the end of fermentation, a concentration that is 2–3 times higher than is possible in regular batch or fed-batch fermentation. Butanol productivities and glucose conversions in fed-batch extractive fermentation compare favorable with continuous fermentation and in situ product removal fermentations.List of Symbols C g kg/m3 concentration of glucose in the feed - C w dm3/m3 concentration of water in the feed - F(t) cm3/h flowrate of feed to the fermentor at time t - V(t) dm3 broth volume at time t - V i dm3 initial broth volume - V si dm3 volume of the i-th aqueous phase sample - effective fraction of water in the feed Part 1. Bioprocess Engineering 2 (1987) 1–12  相似文献   

13.
旨在研究化学改性的甘蔗渣作为固定化载体对丙酮丁醇梭菌Clostridium acetobutylicum XY16发酵制备生物丁醇的影响。首先利用不同浓度的聚乙烯亚胺(PEI)和1 g/L戊二醛(GA)对甘蔗渣表面进行化学改性,增强甘蔗渣对Clostridium acetobutylicum XY16的附载能力。经4 g/L聚乙烯亚胺和1 g/L戊二醛改性的甘蔗渣(添加量10 g/L)应用到固定化批次发酵中,发酵36 h后丁醇和总溶剂浓度最高,分别达到了12.24 g/L和21.67 g/L,同时溶剂的生产速率达到0.60 g/(L·h),生产速率比游离细胞和未改性甘蔗渣固定化细胞分批发酵分别提高了130.8%和66.7%。在此基础上对改性甘蔗渣固定化的细胞进行6次重复批次发酵,丁醇和总溶剂的产量稳定,溶剂生产速率逐渐提高至0.83 g/(L·h),同时转化率也提高至0.42 g/g。  相似文献   

14.
The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017  相似文献   

15.
A novel acetone-butanol production process was developed which integrates a repeated fed-batch fermentation with continuous product removal and cell recycle. The inhibitory product concentrations of the fermentation by Clostridium acetobutylicum were reduced by the simultaneous extraction process using polyvinylpyridine (PVP) as an adsorbent. Because of the reduced inhibition effect, a higher specific cell growth rate and thus a higher product formation rate was achieved. The cell recycle using membrane separation increased the total cell mass density and, therefore, enhanced the reactor productivity. The repeated fed-batchoperation overcame the drawbacks typically associated with a batch operation such as down times, long lag period, and the limitation on the maximum initial substrate concentration allowed due to the substrate inhibition. Unlike a continuous operation, the repeated fed-batch operation could beoperated for a long time at a relatively higher substrate concentration without sacrificing the substrate loss in the effluent. As a result, the integrated process reached 47.2 g/L in the equivalent solvent concentration (including acetone, butanol, and ethanol) and 1.69 g/L . h in the fermentor productivity, on average, over a 239.5-h period. Compared with a controlled traditional batch acetone-butanol fermentation, the equivalent solvent concentration and the tormentor productivity were increased by 140% and 320%, respectively. (c) 1995 John Wiley & Sons Inc.  相似文献   

16.
In ethanol fermentations inhibition of the microorganism by ethanol limits the amount of substrate in the feed that can be converted. In a process high feed concentrations are desirable to minimize the flows. Such high feed concentrations can be realized in integrated processes in which ethanol is recovered from the fermentation broth as it is formed. In this study ethanol recovery by pervaporation was coupled to glucose fermentations by baker's yeast. Pervaporation was carried out with commercial silicone based hollow-fibre membrane modules with relatively high fluxes. Three different types of process configurations with pervaporation were investigated. Two of these configurations also included cell retention by microfiltration, in order to optimize the productivity. In the systems with pervaporation a feed containing 360 kg/m3 glucose could be converted almost completely. This feed concentration is a factor three higher than in a process without ethanol recovery. The productivity was 14 kg/m3 h in a system with pervaporation only, and could be increased to 43 kg/m3 h in the system with all recycle by microfiltration. The kinetic data suggest that accumulation of inhibitory compounds occurs in the integrated system. The integrated process was relatively easy in operation.  相似文献   

17.
Penicillin was recovered from mycel-containing fermentation broth by direct reactive extraction into a counter-current extraction decanter, Type CA 226-290 of the Westfalia Separator Co., at room temperature via steady state operation. Penicillin concentrations in the feed varied from 3 to 41 g L(-1), Amberlite LA-2 carrier concentrations from 7 to 20 g L(-1)and/or DITDA carrier concentrations from 7.2 to 84 g L(-1), the LA-2-to-penicillin mole concentration ratio from 4 to 6.4, and/or the DITDA-to-penicillin mole concentration ratio was maintained at 2. The throughputs of the fermentation broth (520 to 880 L h(-1)) of the solvent phase (200 to 860 L h(-1)) and the over all throughput (800 to 1750 L h(-1)) were high. Extraction degrees of 72 to 96% were achieved between pH 4.6 and 5.1. Without carriers in the same pH range, extraction degrees of only 17 to 19% were attained. By reducing the pH to 2.3 and in the absence of carriers, the degree of extraction was increased to 61%. However, during the extraction, 6.5% of the penicillin decomposed. At these high throughputs, the steady state was attained within 1 to 4 min. Through the mechanical stress, the length of the hyphae was reduced and the protein content of the broth was increased by 50 to 100%. However, this protein content had no appreciable influence on the phase separation.  相似文献   

18.
The distribution of protein and blood-group-antigen activity obtained after butanol extraction of erythrocyte ;ghosts' under various conditions is described. Butanol extraction under low-ionic strength conditions results in the recovery of membrane protein in high yield in the aqueous phase. Blood-group-A activity is found in both the aqueous and butanol phases, whereas blood-group-P activity is confined to the butanol phase and blood-group-I and blood-group-MN activity are restricted to the aqueous phase. Much lower yields of protein are obtained in the aqueous phase when high-ionic-strength conditions are used. An appreciable amount of material is precipitated at the interface. Under these conditions blood-group-P activity is found only in the butanol phase, blood group-A activity in the butanol phase and interface material and only blood-group-MN activity in the aqueous phase. In contrast with previous reports no correlation could be demonstrated between the secretor status of the donors and the presence of blood-group-A activity in the aqueous phase after butanol extraction under any of the extraction conditions used. By using butanol extraction under high-ionic-strength conditions it is possible to isolate the blood-group-MN-active sialoglycoprotein in high yield from erythrocyte ;ghosts' by a simple procedure.  相似文献   

19.
We describe the use of emulsion liquid membrane technology to perform chiral separations on low molecular weight species. We have reviewed liquid membrane technology in the context of existing process scale chiral separations. We illustrate the potential of this new technique by presenting our results on the selective extraction of phenylalanine enantiomers, using copper (II) N-decyl-(L)-hydroxyproline as a chiral selector in an emulsion liquid membrane configuration. This is compared with an analogous batch solvent extraction system. Initial batch enantiomeric excesses of greater than 40% were observed with the emulsion liquid membrane system compared with around 25% for the solvent extraction system. It was also noted that the system is not limited by the equilibrium capacity constraints of the solvent extraction system. We have shown that kinetic chiral liquid membrane technology offers high productivity and flexibility compared with analogous process scale chiral technologies. Recent transfer of highly specific chiral reversed-phase high-performance liquid chromatographic chemistries have shown that “one-stop” enantiomeric excesses of commercial interest (>95%) are achievable using kinetic chiral liquid membrane systems. Solvent and temperature selection strategies also have been outlined as means of increasing the enantioselectivity of existing liquid membrane extraction chemistries. Chirality 9:261–267, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
End-product conversion, low product concentration and large volumes of fermentation broth, the requirements for large bioreactors, in addition to the high cost involved in generating the steam required to distil fermentation products from the broth largely contributed to the decline in fermentative products. These considerations have motivated the study of organic extractants as a means to remove the product during fermentation and minimize downstream recovery. The aim of this study is to assess the practical applicability of liquid–liquid extraction in 2,3-butanediol fermentations. Eighteen organic solvents were screened to determine their biocompatibility, and bioavailability for their effects on Klebsiella pneumoniae growth. Candidate solvents at first were screened in shake flasks for toxicity to K. pneumoniae. Cell density and substrate consumption were used as measures of cell toxicity. The possibility of employing oleyl alcohol as an extraction solvent to enhance end product in 2,3-butanediol fermentation was evaluated. Fermentation was carried out at an initial glucose concentration of 80 g/l. Oleyl alcohol did not inhibit the growth of the fermentative organism. 2,3-Butanediol production increased from 17.9 g/l (in conventional fermentation) to 23.01 g/l (in extractive fermentation). Applying oleyl alcohol as the extraction solvent, about 68% of the total 2,3-butanediol produced was extracted. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号