首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Stopped-flow circular dichroism and fluorescence spectroscopy are used to characterize the assembly of complexes consisting of plasmid DNA bound to the cationic lipids dimethyldioctadecylammonium bromide and 1, 2-dioleoyl- 3-trimethylammonium-propane and a series of polyamidoamine dendrimers. The kinetics of complexation determined from the stopped-flow circular dichroism measurements suggests complexation occurs within 50 ms. Further analysis, however, was precluded by the presence of mixing (shear) artifacts. Stopped-flow fluorescence employing the high-affinity DNA dyes Hoechst 33258 and YOYO-1 was able to resolve two sequential steps in the assembly of complexes that are assigned to binding/dehydration and condensation events. The rates of each process were determined over the temperature range of 10-50 degrees C and activation energies were determined from the slope of Arrhenius plots. The behavior of polyamidoamine dendrimers can be separated into two classes based on their differing binding modes: generation 2 and the larger generations (G4, G7, and G9). The larger generations have activation energies for binding that follow the trend G4 > G7 > G9. The activation energies for condensation (compaction) of complexes composed of these same dendrimers have the opposite trend G9 > G7 > G4. It is postulated that a balance between a more energetically favorable condensation and less favorable binding may prove beneficial in enhancing gene delivery.  相似文献   

2.
Cationic polymers such as poly(amidoamine), PAMAM, dendrimers have been used to electrostatically complex siRNA molecules forming dendriplexes for enhancing the cytoplasmic delivery of the encapsulated cargo. However, excess PAMAM dendrimers is typically used to protect the loaded siRNA against enzymatic attack, which results in systemic toxicity that hinders the in vivo use of these particles. In this paper, we evaluate the ability of G4 (flexible) and G5 (rigid) dendrimers to complex model siRNA molecules at low +/− ratio of 2/1 upon incubation for 20 minutes and 24 hours. We examine the ability of the formed G4 and G5 dendriplexes to shield the loaded siRNA molecules and protect them from degradation by RNase V1 enzymes using atomic force microscopy (AFM). Results show that G4 and G5 dendrimers form similar hexagonal complexes upon incubation with siRNA molecules for 20 minutes with average full width of 43±19.3 nm and 62±8.3 at half the maximum height, respectively. AFM images show that these G4 and G5 dendriplexes were attacked by RNase V1 enzyme leading to degradation of the exposed RNA molecules that increased with the increase in incubation time. In comparison, incubating G4 and G5 dendrimers with siRNA for 24 hours led to the formation of large particles with average full width of 263±60 nm and 48.3±2.5 nm at half the maximum height, respectively. Both G4 and G5 dendriplexes had a dense central core that proved to shield the loaded RNA molecules from enzymatic attack for up to 60 minutes. These results show the feasibility of formulating G4 and G5 dendriplexes at a low N/P (+/−) ratio that can resist degradation by RNase enzymes, which reduces the risk of inducing non-specific toxicity when used in vivo.  相似文献   

3.
The specific features of liquid-crystalline dispersions formed by double-stranded DNA molecules interacting with polypropylenimine dendrimers of five generations (G1—G5) in aqueous saline solutions of various ionic strengths were studied. It was demonstrated that the binding of dendrimer molecules to DNA led to the formation of dispersions independently of solution ionic strength and dendrimer structure. By the example of a generation 4 dendrimer, it was shown that the shape of dispersion particles of the (DNA-dendrimer G4) complex were close to a sphere with a diameter of 300–400 nm. The boundary conditions (ionic strength of solution and molecular mass of dendrimer) for the formation of optically active (cholesteric) and optically inactive (DNA-dendrimer) dispersions were determined by circular dichroism spectroscopy. The dispersions formed by dendrimers G1–G3 and G5 were optically inactive. Dendrimers G4 formed liquid-crystalline dispersions of two types. Cholesteric liquid-crystalline dispersions were formed in high ionic strength solutions (μ > 0.4), whereas the dispersions formed in low and intermediate ionic strength solutions (μ < 0.4) lacked an intense negative band in their circular dichroism spectra. The effect of molecular crowding on both the (DNA-dendrimer G4) binding efficiency and the pattern of spatial packing of the (DNA-dendrimer G4) complexes in the liquid-crystalline dispersion particles was demonstrated. The factors determining the structural polymorphism of the liquid-crystalline dispersions of (DNA-dendrimer) complexes are postulated.  相似文献   

4.
Asymmetrical lysine dendrimers are promising as vectors for delivering gene expression constructs into mammalian cells. The condensing, protective, and transfection properties were studied for pentaspherical lysine dendrimer D5 and its analog D5C10, modified with capric acid residues at the outer sphere; in addition, the transfection activity was assayed for complexes DNA-dendrimer-endosomolytic peptide JTS-1. Fatty acid residues incorporated in lysine dendrimers proved to improve their ability to bind DNA, to protect DNA from nuclease degradation, and to ensure its transfer into the nucleus. Peptide JTS-1 introduced in DNA-dendrimer complexes significantly increased their transfection activity. The potentiating effect of JTS-1 was especially high with the DNA-D5C10 complex. An excess of JTS-1 changed the structure of the complexes and reduced their transfection activity. It was assumed that dendrimers D5 and D5C10 are promising vectors for DNA delivery to eukaryotic cells and provide a basis for constructing more refined nonviral module carriers.  相似文献   

5.
The nonviral vector based gene delivery approach is attractive due to advantages associated with molecular-level modifications suitable for optimization of vector properties. In a new class of nonviral gene delivery systems, we herein report the potential of poly(ether imine) (PETIM) dendrimers to mediate an effective gene delivery function. PETIM dendrimer, constituted with tertiary amine branch points, n-propyl ether linkers and primary amines at their peripheries, exhibits significantly reduced toxicities, over a broad concentration range. The dendrimer complexes pDNA effectively, protects DNA from endosomal damages, and delivers to the cell nucleus. Gene transfection studies, utilizing a reporter plasmid pEGFP-C1 and upon complexation with dendrimer, showed a robust expression of the encoded protein. The study shows that PETIM dendrimers are hitherto unknown novel gene delivery vectors, combining features of poly(ethylene imine)-based polymers and dendrimers, yet are relatively nontoxic and structurally precise.  相似文献   

6.
Dendrimers are unique synthetic macromolecules of nanometer dimensions with a highly branched structure and globular shape. Among dendrimers, polyamidoamine (PAMAM) have received most attention as potential transfection agents for gene delivery, because these macromolecules bind DNA at physiological pH. The aim of this study was to examine the interaction of calf-thymus DNA with several dendrimers of different compositions, such as mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) at physiological conditions, using constant DNA concentration and various dendrimer contents. FTIR, UV-visible, and CD spectroscopic methods, as well as atomic force microscopy (AFM), were used to analyze the macromolecule binding mode, the binding constant, and the effects of dendrimer complexation on DNA stability, aggregation, condensation, and conformation. Structural analysis showed a strong dendrimer-DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of K(mPEG-G3) = 1.5 (±0.5) × 10(3) M(-1), K(mPEG-G4) = 3.4 (±0.80) × 10(3) M(-1), and K(PAMAM-G4) = 8.2 (±0.90) × 10(4) M(-1). The order of stability of polymer-DNA complexation is PAMAM-G4 > mPEG-G4 > mPEG-G3. Both hydrophilic and hydrophobic interactions were observed for dendrimer-DNA complexes. DNA remained in the B-family structure, while biopolymer particle formation and condensation occurred at high dendrimer concentrations.  相似文献   

7.

Background

Schistosomiasis japonica remains a major public-health concern in China. Praziquantel-based chemotherapy effectively reduces both infections and intensity; however, it can not prevent re-infection. Furthermore, there is an increasing concern about praziquantel resistance following long-term repeated use of the drug in endemic areas. Therefore, development of a schistosomiasis vaccine, as a strategy to prevent and control schistosomiasis japonica, has been given high priority. The present study was conducted to develop PAMAM dendrimers as a novel vaccine delivery vector for a schistosomiasis japonica DNA vaccine and evaluate its ability to enhance protective effects against Schistosoma japonicum infection.

Methodology/Principal Findings

Lysine was used to modify 4.0G PAMAM, and the modified product PAMAM-Lys was synthesized. PAMAM-Lys showed both high transfection and low cytotocity for gene delivery in vitro. DNA vaccines combined with PAMAM-Lys produced higher level of protection compare with naked DNA vaccines against S. japonicum infection in a mouse model. Futhermore,antibodies from mice immunized with PAMAM-Lys combined DNA vaccines were significantly higher than those of mice immunized with the naked DNA vaccines. The PAMAM-Lys vector elicited a predominantly IgG2a antibody response and a tremendously increase in the production of IL-2 and IFN-γ.

Conclusion/Significance

Lysine-modified PAMAM-Lys is an excellent vector. PAMAM-Lys may enhance the immunoreactivity of DNA vaccine and increase the protective effect of the SjC23 DNA vaccine against S. japonicum infection.  相似文献   

8.
PAMAM dendrimers are cationic polymers that have been used for the delivery of genes and oligonucleotides to cells. However, little is known about the behavior of dendrimer–nucleic acid complexes once they reach the cell interior. To pursue this issue, we prepared dendrimers conjugated with the fluorescent dye Oregon green 488. These were used in conjunction with oligonucleotides labeled with a red (TAMRA) fluorophore in order to visualize the sub-cellular distribution of the dendrimer–oligonucleotide complex and of its components by two-color digital fluorescence microscopy. The 2′-O-methyl antisense oligonucleotide sequence used in these studies was designed to correct splicing at an aberrant intron inserted into a luciferase reporter gene; thus effective delivery of the antisense agent results in the expression of the reporter gene product. The dendrimer–oligonucleotide complex remained associated during the process of uptake into vesicular compartments and eventual entry into the nucleus. Since the pharmacological activity of the antisense compound was manifest under these conditions, it suggests that the dendrimer–oligonucleotide complex is functionally active. A surprising result of these studies was that the Oregon green 488-conjugated dendrimer was a much better delivery agent for antisense compounds than unmodified dendrimer. This suggests that coupling of relatively hydrophobic small molecules to PAMAM dendrimers may provide a useful means of enhancing their capabilities as delivery agents for nucleic acids.  相似文献   

9.
Conventional dendrimers are spherical symmetrically branched polymers ending with active surface functional groups. Polyamidoamine (PAMAM) dendrimers have been widely studied as gene delivery vectors and have proven effective at delivering DNA to cells in vitro. However, higher‐generation (G4‐G8) PAMAM dendrimers exhibit toxicity due to their high cationic charge density and this has limited their application in vitro and in vivo. Another limitation arises when attempts are made to functionalize spherical dendrimers as targeting moieties cannot be site‐specifically attached. Therefore, we propose that lower‐generation asymmetric dendrimers, which are likely devoid of toxicity and to which site‐specific attachment of targeting ligands can be achieved, would be a viable alternative to currently available dendrimers. We synthesized and characterized a series of peptide‐based asymmetric dendrimers and compared their toxicity profile and ability to condense DNA to spherical PAMAM G1 dendrimers. We show that asymmetric dendrimers are minimally toxic and condense DNA into stable toroids which have been reported necessary for efficient cell transfection. This paves the way for these systems to be conjugated with targeting ligands for gene delivery in vitro and in vivo. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The interaction between a cationic poly(amido amine) (PAMAM) dendrimer of generation 4 and double-stranded salmon sperm DNA in 10 mM NaBr solution has been investigated using dynamic light scattering (DLS) and steady-state fluorescence spectroscopy. The structural parameters of the formed aggregates as well as the complex formation process were studied in dilute solutions. When DNA is mixed with PAMAM dendrimers, it undergoes a transition from a semiflexible coil to a more compact conformation due to the electrostatic interaction present between the cationic dendrimer and the anionic polyelectrolyte. The DLS results reveal that one salmon sperm DNA molecule forms a discrete aggregate in dilute solution with several PAMAM dendrimers with a mean apparent hydrodynamic radius of 50 nm. These discrete complexes coexist with free DNA at low molar ratios of dendrimer to DNA, which shows that cooperativity is present in the complex formation. The formation of the complexes was confirmed by agarose gel electrophoresis measurements. DNA in the complexes was also found to be significantly more protected against DNase catalyzed digestion compared to free DNA. The number of dendrimers per DNA chain in the complexes was found to be approximately 35 as determined by steady-state fluorescence spectroscopy.  相似文献   

11.
Gene therapy is a novel method to treat a variety of diseases including genetic disorders and cancer. Nonviral gene carriers have now gained considerable attention as gene carrier systems. Polyamidoamine (PAMAM) and polypropyleneimine (PPI) are the two most widely used denderimers in gene delivery studies. The aim of the current study was to investigate the effects of modification of generation 5 polypropyleneimine (G5 PPI) dendrimers with alkanoate groups as hydrophobic moieties on DNA transfection and cytotoxicity. Six, 10, and 16 carbon derivatives of bromoalkanoic acids were conjugated onto PPI with 10%, 30%, and 50% of surface amine grafting. Ethidium bromide exclusion assay results proved the ability of modified carriers to condense DNA. Transfection assay showed higher DNA delivery potential for 30% and 50% grafting with decanoate moieties compared to native G5 PPI and SuperfectTM. 3-(4,5-Dimethylthiazol-2-yl)-2,5-di phenyltetrazolium bromide (MTT) and apoptosis experiments showed lower toxicity for modified carriers compared to unmodified PPI. The hemolytic effect of grafted carriers was not significantly different from G5 PPI. Size and zeta potential measurements revealed that polyplex size was less than 200 nm and electrical charges were in the range 14–25 mV. The hydrophobic modifications improved transfection activity and toxicity of G5 PPI without negatively affecting hemocompatibility. These modified carriers are therefore promising candidates for further in vivo investigations.KEY WORDS: gene delivery, hydrophobic modification, nonviral vector, polypropyleneimine, transfection  相似文献   

12.
Coles DJ  Yang S  Minchin RF  Toth I 《Biopolymers》2008,90(5):651-654
Understanding the nature of binding of polycationic dendrimers to DNA provides useful information on their role in gene delivery. In the present study, we have characterized the interaction of several peptide-based polycationic dendrimers with salmon sperm DNA using isothermal titration calorimetry. The dendrimers consisted of the cell penetrating peptide TAT, a nuclear localization signal peptide and dendritic polylysine. The binding affinity and thermodynamic parameters were found to increase as the number of positive charges on the dendrimer increased, indicating that ionic interactions were the major binding forces between the two molecules. The effect of acidic pH (3.2) compared to a more neutral pH (7.2) was also examined. The binding affinity was stronger at the lower pH but precipitation of the complex was more prominent at pH 7.2 which was shown by large enthalpies. The results indicate that our dendrimers are forming stable complexes with DNA.  相似文献   

13.
The rate and character of superficial tissue regeneration after wounds, burns, and other traumas depend on cell proliferation within the damaged area. The acceleration of wound healing via the stimulation of cell proliferation and extracellular matrix synthesis is one of the most important tasks of modern medicine. There are gene therapy approaches to wound treatment, such as the transfer of genes that encode mitogenic growth factors to the wound area. The most important step in the development of the gene therapy approaches is the design of gene delivery tools. Despite the high efficiency of viral vectors, the nonviral approaches have some advantages (low toxicity, low immunogenity, safety, and the absence of side effects). Among the nonviral gene delivery tools molecular conjugates are the most popular due to their efficiency, simplicity, and the capacity for targeted gene transfer. In the present work, we have developed two molecular conjugates, NLS-TSF7 and NLS-TSF12, which consist of the modified signal of the nuclear localization of the T-antigen of the SV40 virus (cationic part) and the peptide ligands of the mammalian transferrin receptor (ligand part). Those conjugates bind to plasmid DNA via the formation of polyelectrolytic complexes and are able to deliver plasmid DNA into cells that express transferrin receptors through receptor-mediated endocytosis. The transfer of the expression vector of the luciferase gene in the complex with the molecular conjugate NLS-TSF7 to murine surface tissues led to about the 100-fold increase of luciferase activity in comparison with the transfer of the free expression vector. The treatment of mice with incised wounds with complexes of the expression vector of the synthetic human gene that encodes insulin-like growth factor 1 with molecular conjugate NLS-TSF7 led to the acceleration of wound healing in comparison with mice treated with the free expression vector. The obtained results confirm the high efficiency of the developed approach to regenerative gene therapy for treating the superficial tissue damage of mammals.  相似文献   

14.
Dendrimers are a relatively new class of materials with unique molecular architectures, which provide promising opportunities for biological applications as DNA carriers and drug delivery systems. Progress in these fields, however, requires knowledge of their potential interactions with biological components at cellular and molecular level. This study utilizes Trp phosphorescence spectroscopy to examine possible perturbations of the protein native fold in solution by neutral, positively and negatively charged fifth generation polyamidoamine (PAMAM) dendrimers. Phosphorescence lifetime measurements, conducted on model proteins varying in the degree of burial of the triplet probe and in quaternary structure, show that dendrimers interact with proteins in solutions forming stable complexes in which the protein structure may be significantly altered, particularly in superficial, flexible regions of the polypeptide. Both electrostatic and non-electrostatic interactions can give rise to stable complexes, whose affinity and limited number of binding sites distinguish them from mere aspecific molecular associations. Of direct relevance for the application of these polymers in the medical field, structural alterations have also been detected in human plasma proteins such as serum albumin and immunoglobulins. The above results suggest that Trp phosphorescence may provide a useful monitor for working out experimental conditions and protocols that help preserve the structural integrity of proteins in the presence of these polymers.  相似文献   

15.
Asymmetrical lysine dendrimers are promising as vectors for delivering gene expression constructs into mammalian cells. The condensing, protective, and transfection properties were studied for pentaspherical lysine dendrimer D5 and its analog D5C10, modified with capric acid residues at the outer sphere; in addition, the transfection activity was assayed for complexes DNA-dendrimer-endosomolytic peptide JTS-1. Fatty acid residues incorporated in lysine dendrimers proved to improve their ability to bind DNA, to protect DNA from nuclease degradation, and to ensure its transfer into the nucleus. Peptide JTS-1 introduced in DNA-dendrimer complexes significantly increased their transfection activity. The potentiating effect of JTS-1 was especially high with the DNA-D5C10 complex. An excess of JTS-1 changed the structure of the complexes and reduced their transfection activity. It was assumed that dendrimers D5 and D5C10 are promising vectors for delivering DNA to eukaryotic cells and provide a basis for constructing more refined nonvirus module carriers.  相似文献   

16.
17.
Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers.  相似文献   

18.
In vitro gene delivery using polyamidoamine dendrimers with a trimesyl core   总被引:5,自引:0,他引:5  
Polyamidoamine (PAMAM) dendrimer represents one of the most efficient polymeric gene carriers. To investigate the effect of the core structure and generation of dendrimers on the complex formation and transfection efficiency, a series of PAMAM dendrimers with a trimesyl core (DT) at different generations (DT4 to DT8) were developed as gene carriers and compared with the PAMAM dendrimers derived from pentaerythritol (DP) and inositol (DI). The minimal generation number of DTs at which the dendrimer has enough amino group density to effectively condense DNA was higher (generation 6) than those of DPs and DIs (generation 5). DTs of generation 6 or higher condensed DNA into complexes with an average diameter ranging from 100 to 300 nm, but the 4th and 5th generations of DT (DT4 and DT5) formed only a severe aggregate with DNA. Interestingly, the DT6/pDNA complex was determined to be much smaller (100-300 nm) than those prepared with DP5 or DI5 (>600 nm) at N/P ratios higher than 15. The optimal generation numbers at which the dendrimers showed the highest transgene expression in COS-7 cells were 5 for DPs and DIs but 6 for DTs. The DT6/pDNAcomplex with smaller size mediated higher transgene expression in COS-7 cells than those prepared with DP5 or DI5. The in vitro transfection efficiency of the DT dendrimers as evaluated in HeLa cells, COS-7 cells, and primary hepatocytes decreased in the order of DT6 > DT7 > DT8 > DT5 > DT4. The transfection mediated by DT6 was significantly inhibited by bafilomycin A1. The acid-base titration curve for DT6 showed high buffer capacity in the pH range from 5.5 to 6.4 (pK(a) approximately 6). This permits dendrimers to buffer the pH change in the endosomal compartment. However, the transfection efficiency mediated by DT6 decreased significantly in the presence of serum in both HeLa cells and COS-7 cells. The cytotoxicity of DTs evaluated in HeLa cells using the 3-{4,5-dimethylthiazol-2-yl}-2,5-diphenyltetrazolium bromide assay showed a trend of increasing toxicity with the polymer generations. The LD50 values of DT4 through DT8 were 628, 236, 79, 82, and 77 microg/mL, respectively, which were higher than that of poly(ethyleneimide) (18 microg/mL) and poly(L-lysine) (28 microg/mL) in the same assay. With a lower cytotoxicity and versatility for chemical conjugation, these PAMAM dendrimers with a DT core warrant further investigation for nonviral gene delivery.  相似文献   

19.
Poly(amidoamine) dendrimers (generations 5 and 6) with amine termini were conjugated with peptides containing the arginine-glycine-aspartic acid (RGD) sequence having in view their application as gene delivery vectors. The idea behind the work was to take advantage of the cationic nature of dendrimers and of the integrin targeting capabilities of the RGD motif to improve gene delivery. Dendrimers were used as scaffolds for RGD clustering and, by controlling the number of peptides (4, 8, and 16) linked to each dendrimer, it was possible to evaluate the effect of RGD density on the gene delivery process. The new vectors were characterized in respect to their ability to neutralize and compact plasmid DNA (pDNA). The complexes formed by the vectors and pDNA were studied concerning their size, zeta potential, capacity of being internalized by cells and ability of transferring genes. Transfection efficiency was analyzed, first, by using a pDNA encoding for Enhanced Green Fluorescent Protein and Firefly Luciferase and, second, by using a pDNA encoding for Bone Morphogenetic Protein-2. Gene expression in mesenchymal stem cells was enhanced using the new vectors in comparison to native dendrimers and was shown to be dependent on the electrostatic interaction established between the dendrimer moiety and the cell surface, as well as on the RGD density of nanoclusters. The use of dendrimer scaffolds for RGD cluster formation is a new approach that can be extended beyond gene delivery applications, whenever RGD clustering is important for modulating cellular responses.  相似文献   

20.
Major attention has been focused on dendrimer-DNA complexes because of their applications in gene delivery systems. Dendrimers are also used to transport miRNA and siRNA in vitro. We examine the interaction of tRNA with several dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) under physiological conditions using constant tRNA concentration and various dendrimer contents. FTIR, UV-visible, and CD spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the macromolecule binding mode, the binding constant, and the effects of dendrimer complexation on RNA stability, aggregation, particle formation, and conformation. Structural analysis showed that dendrimer-tRNA complexation occurred via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(mPEG-G3) = 7.6 (± 0.9) × 10(3) M(-1), K(mPEG-G4) = 1.5 (± 0.40) × 10(4) M(-1), and K(PAMAM-G4) = 5.3 (± 0.60) × 10(4) M(-1) show stronger polymer-RNA complexation by PAMAM-G4 than pegylated dendrimers. RNA remains in the A-family structure, whereas biopolymer aggregation and particle formation occurred at high polymer concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号