首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the European pond turtle (Emys orbicularis), gonadal sex differentiation is temperature-dependent. The temperature sensitive period (TSP) of gonadogenesis lies between stages 16 and 22 of embryonic development. Previous studies have shown that embryos incubated at 30 degrees C, a temperature yielding 100% phenotypic females, can be sex reversed by treatments with an aromatase inhibitor administered during TSP or even somewhat after TSP (as of stage 22+). The goal of the present study was to determine whether the ovary still retains male potential at later stages of embryonic development and whether the induced male characters persist after hatching. For this purpose, eggs of E. orbicularis were treated with letrozole, a nonsteroidal aromatase inhibitor, at or as of stages 23, 24 or 25, then gonadal aromatase activity in each individual and the related gonadal structure were studied at hatching (stage 26) and for one year after hatching. Two kinds of treatments were carried out: 1) repeated applications of 10 microg of letrozole in ethanolic solution onto the eggshell; and 2) a single injection of 10 microg of letrozole in olive oil. Similar results were obtained with either application or injection of the aromatase inhibitor. In treatments as of or at stage 23, individuals with gonadal aromatase activity lower than 20 fmoles/hour/gonad had ovotestes, i.e., 22% of the treated individuals. At hatching, the inner part of these ovotestes contained testicular cords and also mixed lacunae presenting various degrees of transdifferentiation of the epithelium into a Sertolian epithelium. The cortex was maintained, although some germ cells degenerated within it. These processes continued after hatching. However, at 12 months, gonads were still ovotestes displaying some follicles with a growing oocyte in the remaining parts of the cortex. In treatments as of or at stages 24 or 25, only a few individuals were masculinized. One had ovotestes; in others, the cortex was absent in some parts and when it was present oocytes were degenerating. These results show that in the European pond turtle, differentiation of ovotestes from ovaries can be induced by treatment with an aromatase inhibitor starting at late stages of embryonic development (between the end of TSP and hatching), although such differentiation is less frequent as embryonic development proceeds. Sex reversal persists for at least one year after hatching. J. Exp. Zool. 290:490-497, 2001.  相似文献   

2.
Cellular infiltrations forming lymphoid-like aggregates were previously observed in gonads of two turtle species exhibiting temperature-dependent sex determination (TSD): at hatching in Chelydra serpentina; at and after hatching in Emys orbicularis. We show here that such aggregates are also present in gonads of Testudo graeca by the end of embryonic development, suggesting that their occurrence is general in turtles. Since in C. serpentina, infiltrations were observed mainly in testes exhibiting remnants of the germinal epithelium, it was assumed that their occurrence was an expression of maleness leading to rejection of this epithelium. The generality of this hypothesis was tested in E. orbicularis by looking for lymphoid-like aggregates in three types of gonads (testes, ovotestes, and ovaries) and for the stages at which they occur. Gonads were from embryos, hatchlings, and young incubated at various temperatures. Ovotestes obtained by treatment with an aromatase inhibitor of eggs incubated at female-producing temperature were also examined. In these gonads, the differentiation of Sertoli cells in testicular cords/tubes was ascertained by expression of SOX9. Moreover, the cell composition of aggregates was determined on electron micrographs. Aggregates appear in ovaries and ovotestes by the end of embryonic development and are present in the majority of these gonads at hatching, and at least up to one year after hatching. They are composed mainly of lymphocytes and fibroblasts. Aggregates are not present in typical testes. Since they occur in most ovaries, they cannot be seen as an expression of maleness. Rather, lymphocytic infiltration and formation of lymphoid aggregates in turtle gonads can be seen as components of the immune system, and can be under the control of gonadal endogenous sex steroids.  相似文献   

3.
The objectives of this work were to determine whether or not plasma levels of testosterone and estradiol reflect the various grades of sex reversal in genetic female chickens treated with Fadrozole (CGS 16949 A), a nonsteroidal aromatase inhibitor, and whether gonadal aromatase activity and plasma levels of testosterone and estradiol in treated females can or not be modified by post-hatch treatments with Fadrozole or Fadrozole + testosterone. Eggs were injected with 1 mg Fadrozole on day 4 of incubation. In females having developed sex-reversed gonads, endocrine parameters (estradiol and testosterone) at and after 13 weeks of age were indicative of the degree of sex reversal, with, for example, sex-reversed females with two testes having the highest levels of testosterone and the lowest levels of estradiol. Among these females, eight (from a total of 13) produced ejaculates with scarce and abnormal spermatozoa. Some motility was observable in the ejaculates from five of them. None of the post-hatch treatments had a significant effect on plasma levels of testosterone or estradiol (measured at 3-week intervals from week 4 to week 28 post-hatch) or on gonadal aromatase activity (measured at 12 and 28 weeks). In conclusion, these results indicate that plasma levels of testosterone and estradiol at and after 13 weeks of age are valuable indicators of the degree of sex reversal in female chickens treated with Fadrozole prior to gonadal sex differentiation. In pre-cited conditions, post-natal treatments with either Fadrozole or Fadrozole + testosterone had no apparent effect on the degree of sex reversal in these birds. Finally, the occurrence of ejaculates with motile although scarce and abnormal spermatozoa, revealed that epididymes and ducti deferens can develop and become functional in sex-reversed female chickens.  相似文献   

4.
Mechanisms regulating sexual differentiation of the zebra finch song system present an intriguing puzzle. Masculine development of brain regions and behavior can be induced in genetic females by posthatching estradiol treatment. That result is consistent with the hypothesis that estradiol, converted within the brain from testicular androgen via the aromatase enzyme, masculinizes neural structure and function. In contrast, treatment during specific stages of development with the aromatase inhibitor Fadrozole has not prevented masculine development, and the presence of testicular tissue in genetic females did not induce masculine organization of neuroanatomy or singing behavior. Fadrozole treatments in those previous studies were limited, however, and most genetic females had both ovarian and testicular tissue. The present experiments were designed to provide increased aromatase inhibition and to reliably produce genetic females with only testicular tissue. Eggs received a single injection at a later age or with higher doses of Fadrozole than had been used previously. Some embryos were exposed to Fadrozole more frequently by either injecting eggs on 2 days of development or dipping them for 10-12 days in Fadrozole. Finally, in some individuals from Fadrozole-treated eggs, the left gonad was removed, leaving each genetic male and female with a single right testis. None of these treatments significantly affected development of the song system compared to appropriate control groups. These results suggest that sexual differentiation of the zebra finch song system is not regulated by embryonic aromatase activity or by gonadal secretions and instead involves events that need not be mediated by steroid hormones.  相似文献   

5.
In normal males, Müllerian Inhibiting Substance (MIS), produced by testes during an embryonic critical period, is thought to induce regression of the Müllerian duct system, including the oviducts and uterus. In XX sex-reversed dogs, an apparent contradiction has been reported: The uterus persists in the presence of testes or ovotestes. The objective of this study is to determine whether testes of XX male and ovotestes of true hermaphrodite dogs produce MIS, and to examine the anatomy of Müllerian duct derivatives of affected dogs for evidence of regression. Gonadal samples were tested for MIS activity in a bioassay. The mean MIS activity score of XX males was similar to that of normal XY males and significantly greater than that of normal XX females. The mean MIS activity score of XX true hermaphrodites was intermediate between normal XX females and XY males. Within the true hermaphrodite group, ovotestes in which the proportion of testicular tissue was greater than or equal to 1/2 had higher MIS scores than those in which the proportion of testicular tissue was less than 1/2. XX males had a well-developed epididymis adjacent to each testis, but no oviducts. In true hermaphrodites, the oviduct regressed and an epididymis was present when greater than or equal to 1/2 of the adjacent ovotestis was testicular, and MIS activity in that gonad was high. A few ovotestes with intermediate levels of MIS activity had both an oviduct and an epididymis. Regression of the oviductal portion of the Müllerian duct system was positively correlated to the amount of testicular tissue and the MIS activity of the gonad, as would be predicted by Jost's original hypothesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study investigated the possibility that the histological process of gonadal sex differentiation in pejerrey (Odontesthes bonariensis), a fish with marked temperature-dependent sex determination (TSD), occurs through a predictable gradient of differentiation as opposed to simultaneous or random differentiation throughout the gonad. For this purpose, fish reared at 17 degrees, 24 degrees, and 29 degrees C from hatching were sampled weekly for 11 weeks, fixed, and prepared for histological observation of serial cross-sections of the gonads. The thermal manipulation and sampling procedure ensured the availability of males and females at various degrees of gonadal sex differentiation. The location of the differentiated area(s) was estimated in the right and left gonads of 17 females and 14 males selected among the available specimens so as to represent increasing degrees of differentiation. The analysis revealed that sex differentiation followed a gradient from the anterior to posterior areas of the gonads regardless of sex. Furthermore, plotting of the degree of sex differentiation in the right gonad as a function of the degree of differentiation of the left gonad clearly showed that sex differentiation only begins in the right gonad when 10-30% of the length of the left gonad has already differentiated. The mean rostral edge of the differentiated areas in females was 9% and 10.8% for the left and right gonads, respectively, while for males these values were 7.3% and 7.0%, respectively. Thus, it was established that ovarian and testicular differentiation in pejerrey follow both a cephalocaudal and a left-to-right gradient. Possible explanations for this gradient and its relevance for TSD in pejerrey, that is, as a mechanism to prevent discrepant differentiation of male and female features within the same gonad, are discussed.  相似文献   

7.
Summary Two types of hermaphroditism were experimentally induced in genetically female fowls by grafting of embryonic testes in embryos. Of the 27 hermaphrodites observed during the 8 months after hatching, 20 possessed a right testis and a left ovary and 7 a right testis and a left ovotestis. The testes and ovotestes contained seminiferous tubules with a more or less developed germ cell complement, attaining in many cases the early spermatid stage. The interstitial tissue was poorly functional, as shown by the absence of male secondary sex characters. The ovary or ovarian part of the ovotestes possessed numerous small ovarian follicles. The female arrangement of the plumage and the absence of spurs demonstrated the secretion of oestrogens. A mechanism is proposed for explaining this partial masculinization of genetically female gonads, a phenomenon which occurs during the period of embryonic sex differentiation, and is responsible for this experimental true hermaphroditism.  相似文献   

8.
Summary This study was conducted to define the range of phenotypic expression and mode of inheritance of XX sex reversal in the cocker spaniel dog. Breeding experiments produced F1, F1BC, and F2 generations in which 29 XX true hermaphrodites and 3 XX males were defined by chromosome constitution, serial histologic sections of the gonads, and examination of the internal and external genitalia. In XX true hermaphrodites, the most common combination of gonads was bilateral ovotestes, followed by ovotestis and ovary, then ovotestis and testis. The amount of testicular tissue in the two gonads was closely correlated within each true hermaphrodite. The distribution of testicular tissue within ovotestes of true hermaphrodites was consistent with the hypothesis that testicular differentiation is initiated in the center of the gonad and spreads outward. XX males had bilateral aspermatogenic testes and the internal ducts and external genitalia were more masculinized than in true hermaphrodites. Results of breeding experiments are consistent with autosomal recessive inheritance, the affected phenotype being expressed only in dogs with an XX chromosome constitution. The phenotypic expression and mode of inheritance of this disorder is compared to XX sex reversal in humans and other animals.  相似文献   

9.
Embryonic testes grafted in the extraembryonic coelom of 3-day-old genetically female chick embryos may induce total and definitive reversal of gonadal sex differentiation. In this experimental condition, the left gonad becomes a testis instead of an ovary. This makes it possible to compare testicular and ovarian morphogenesis in animals having the same genetic sex and to discount what is due to differences in the genetic determination between male and female. The morphogenesis of such testes is marked by a disappearance of the cortical germinal epithelium. The medullary sex cords keep a narrow lumen instead of becoming large lacunae. The germ cells remain few in the sex cords and do not become meiotic. Furthermore, interstitial cell development is known to be very slow. As a consequence the gross size of the gonad is much smaller than that of an ovary. All these morphogenetic phenomena are unlike those observed during normal ovarian differentiation and evidence an inhibiting influence of the grafted testes. Since inhibition and masculinization are concomitant, inhibition appears to be the mechanism responsible for gonadal sex reversal. The extraembryonic situation of the grafted testes and their relation with the embryo only via the blood stream demonstrates the role of a secreted substance or substances still to be exactly identified. Previous data suggest that this could be the anti-Müllerian-hormone (AMH). Furthermore, previous and present results show that testis differentiation can be actively induced in a bird. This does not agree with the hypothesis that the gonads of the homogametic sex, i.e., the testes in birds, do not need any inducer in order to differentiate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Estrogens play a key role in sexual differentiation of both the gonads and external traits in birds. The production of estrogen occurs via a well-characterised steroidogenic pathway, which is a multi-step process involving several enzymes, including cytochrome P450 aromatase. In chicken embryos, the aromatase gene (CYP19A1) is expressed female-specifically from the time of gonadal sex differentiation. To further explore the role of aromatase in sex determination, we ectopically delivered this enzyme using the retroviral vector RCASBP in ovo. Aromatase overexpression in male chicken embryos induced gonadal sex-reversal characterised by an enlargement of the left gonad and development of ovarian structures such as a thickened outer cortex and medulla with lacunae. In addition, the expression of key male gonad developmental genes (DMRT1, SOX9 and Anti-Müllerian hormone (AMH)) was suppressed, and the distribution of germ cells in sex-reversed males followed the female pattern. The detection of SCP3 protein in late stage sex-reversed male embryonic gonads indicated that these genetically male germ cells had entered meiosis, a process that normally only occurs in female embryonic germ cells. This work shows for the first time that the addition of aromatase into a developing male embryo is sufficient to direct ovarian development, suggesting that male gonads have the complete capacity to develop as ovaries if provided with aromatase.  相似文献   

11.
To clarify the importance of endogenous estrogens during sex differentiation in a teleost fish, the Nile tilapia, we examined the target events for endogenous estrogens and their role during gonadal sex differentiation. The expression of CYP19a (P450arom) precedes any morphological gonadal sex differentiation. Further to these findings, the treatment of XX fry with non-steroidal aromatase inhibitor (AI), Fadrozole, from seven to 14 days after hatching caused complete sex reversal to functional males. The XX sex reversal induced by AI was rescued completely with simultaneous estrogen treatment. We also found that XY fry treated with estrogen, before the appearance of morphological sex differences, caused complete sex reversal from males to females. Taken together, these results suggest that endogenous estrogens are required for ovarian differentiation. To identify the down-stream gene products of estrogen during ovarian differentiation, we performed subtractive hybridization using mRNA derived from normal and estrogen treated XY gonads. Two out of ten gene products were expressed in germ cells, whereas the others were expressed in somatic cells.  相似文献   

12.
Early treatment of Quail eggs by DES promotes a transient feminization of the gonads in genetic males and a strong stimulation of the Müllerian ducts. The left ovotestis results from the juxtaposition of a testicular medulla and an induced female-type cortex, which develops follicles and a characteristic 17 beta-HSD activity. The right testis is reduced but keeps a consistent structure. The medulla of the treated gonads shows, in both sexes, an inhibition of delta 5-3 beta HSD activity during embryonic development. After hatching, this specific enzyme then develops in the steroidogenic cells. These results are compared with others obtained with estradiol and also in chick. The discussion deals also with the effects of these estrogens on the endogenous abilities and specific responses of the gonads in relation to sex differentiation factors.  相似文献   

13.
Abstract. To investigate the possible involvement of oestrogens in the phenomenon of temperature sex-reversal in the turtle Emys orbicularis , the effects of oestrone, oestradiol and an antioestrogen. tamoxifen, on sexual differentiation of gonads were examined at a male-producing temperature of 25° C and at a female-producing temperature of 30° C. When oestrone or oestradiol were injected into eggs incubated at 25° C just before or at the beginning of the thermosensitive period, the gonads differentiated into ovaries instead of testes. Conversely, when tamoxifen was injected, at the same stages, into eggs incubated at 30° C, epithelial cords or tubes, similar to potential seminiferous cords, differentiated in the interior part of the gonads. However, an ovarian-like cortex persisted at their surface. At 25° C, treatment with tamoxifen or with both tamoxifen and oestradiol also resulted in differentiation of ovotestes. These experiments show that tamoxifen binding to oestrogen receptors prevented the inhibitory action of oestrogens on testicular cord development. Maintenance (at 30° C) or development (at 25° C) of ovarian cortex in the presence of tamoxifen can be expected from an agonistic action of this drug, as already described. Preliminary data on steroid content in the gonads indicate that, during the early stages of the thermosensitive period, the level of estrogens is higher at 30° C than at 25° C. It is proposed that in species displaying temperature sensitivity for the sexual differentiation of gonads, temperature acts on the processes regulating the synthesis or the activity of cyto-chrome-P450 aromatase.  相似文献   

14.
The phenotypic effects of a new recessive mutation mas −1, which in homozygous condition induces testicular development in XX animals of common carp ( Cyprinus carpio L.), are described. Sexual differentiation of XX; mas −+/ mas −1 and XX; mas −1/ mas −1 animals was compared with the gonad development of XX wild type females and XY males. In XX females gonadal differentiation starts with the formation of an ovarian cavity and entry into meiosis of germ cells at around 80 days post hatching (ph). Male gonads remain quiescent until 120 days ph during which period they develop a network of loose connective tissue. Spermatogenesis starts with tubule formation and the differentiation of germ cells into spermatogonia type B. Heterozygous XX; mas −+/ mas −1 animals developed as normal females, but in homozygous XX; mas −1/ mas −1 animals two types of gonad development were observed. In the first type, germ cells did not enter meiosis until 100 days ph when they differentiated as spermatogonia. An ovarian cavity was not formed but male specific connective tissue developed instead. These gonad developed as normal testes. In the second type, germ cells differentiated at 80 days ph as either oocytes or spermatocytes, which resulted in the gonads developing as ovotestes. The formation of an ovarian cavity was in most cases incomplete. The phenotypic effects of mas −1 are interpreted as a timing mismatch between mas activation and female sex differentiation.  相似文献   

15.
In mammals, sex is determined in the bipotential embryonic gonad by a balanced network of gene actions which when altered causes disorders of sexual development (DSD, formerly known as intersex). In the XY gonad, presumptive Sertoli cells begin to differentiate when SRY up-regulates SOX9, which in turn activates FGF9 and PGDS to maintain its own expression. This study identifies a new and essential component of FGF signaling in sex determination. Fgfr2 mutant XY mice on a mixed 129/C57BL6 genetic background had either normal testes, or developed ovotestes, with predominantly testicular tissue. However, backcrossing to C57BL6 mice resulted in a wide range of gonadal phenotypes, from hypoplastic testes to ovotestes with predominantly ovarian tissue, similar to Fgf9 knockout mice. Since typical male-specific FGF9-binding to the coelomic epithelium was abolished in Fgfr2 mutant XY gonads, these results suggest that FGFR2 acts as the receptor for FGF9. Pgds and SOX9 remained expressed within the testicular portions of Fgfr2 mutant ovotestes, suggesting that the Prostaglandin pathway acts independently of FGFR2 to maintain SOX9 expression. We could further demonstrate that double-heterozygous Fgfr2/Sox9 knockout mice developed ovotestes, demonstrating that both Fgfr2 and Sox9 can act as modifier intersex genes in the heterozygous state. In summary, we provide evidence that FGFR2 is important for male sex determination in mice, thereby rendering human FGFR2 a candidate gene for unsolved DSD cases such as 10q26 deletions.  相似文献   

16.
Tissue-specific patterns of microRNA (miRNA) expression contribute to organogenesis during embryonic development. Using the embryonic chicken gonads as a model for vertebrate gonadogenesis, we previously reported that miRNAs are expressed in a sexually dimorphic manner during gonadal sex differentiation. Being male biased, we hypothesised that up-regulation of microRNA 202* (MIR202*) is characteristic of testicular differentiation. To address this hypothesis, we used estrogen modulation to induce gonadal sex reversal in embryonic chicken gonads and analyzed changes in MIR202* expression. In ovo injection of estradiol-17beta at Embryonic Day 4.5 (E4.5) caused feminization of male gonads at E9.5 and reduced MIR202* expression to female levels. Female gonads treated at E3.5 with an aromatase inhibitor, which blocks estrogen synthesis, were masculinized by E9.5, and MIR202* expression was increased. Reduced MIR202* expression correlated with reduced expression of the testis-associated genes DMRT1 and SOX9, and up-regulation of ovary-associated genes FOXL2 and CYP19A1 (aromatase). Increased MIR202* expression correlated with down-regulation of FOXL2 and aromatase and up-regulation of DMRT1 and SOX9. These results confirm that up-regulation of MIR202* coincides with testicular differentiation in embryonic chicken gonads.  相似文献   

17.
We have performed a morphological, hormonal and molecular study of the development of the sex ducts in the mole Talpa occidentalis. Females develop bilateral ovotestes with a functional ovarian portion and disgenic testicular tissue. The Müllerian ducts develop normally in females and their regression is very fast in males, suggesting a powerful action of the anti-Müllerian hormone in the mole. RT-PCR demonstrated that the gene governing this hormone begins to be expressed in males coinciding with testis differentiation, and expression continues until shortly after birth. Immunohistochemical studies showed that expression occurs in the Sertoli cells of testes. No expression was detected in females. Wolffian duct development was normal in males and degenerate in prenatal females, but developmental recovery after birth gave rise to the formation of rudimentary epididymides. This event coincides in time with increasing serum testosterone levels and Leydig cell differentiation in the female gonad, thus suggesting that testosterone produced by the ovotestes is responsible for masculinisation of female moles. During postnatal development, serum testosterone concentrations decreased in males but increased in females, thus approaching the levels that adult males and females have during the non-breeding season.  相似文献   

18.
19.
Gonadal sex differentiation is temperature-dependent in Alligator mississippiensis; testis differentiation occurs in embryos incubated at 33°C and ovary differentiation occurs in embryos incubated at 30°C. Laminin and cytokeratin were examined immunohistochemically in the gonads of alligator embryos incubated at these temperatures. The aim of this study was to determine whether these structural proteins show the same sex-specific expression patterns reported for mammalian embryos, and to assess their usefulness as early markers of gonadal differentiation in species with temperature-dependent sex determination. Laminin delineated enlarged seminiferous cords in differentiating testes from developmental stage 23 to hatching. Laminin distribution was more diffuse and revealed smaller cords of cells in differentiating ovaries. Cytokeratin was also detected in developing gonads of both sexes. Cytokeratin became concentrated in the basal cytoplasm of differentiating Sertoli cells in developing testes. In developing ovaries, prefollicular cells of the ovarian cortex and cell cords in the medulla stained strongly for cytokeratin. Cytokeratin did not show the same basal distribution in female medullary cord cells as seen in the Sertoli cells of testes, however. These sex-specific patterns of laminin and cytokeratin distribution in embryonic alligator gonads may serve as early markers of sexual differentiation.  相似文献   

20.
The majority of XX ? XY chimeric mice develop into fertile males. The sexual differentiation of the gonads in these animals has been examined on days 12–14 postcoitum to determine if their development parallels that of normal testes. It was found that 50% of chimeric fetuses, the proportion predicted to be XX ? XY, had neither normal testes nor ovaries. Instead, ovotestes were present, with varying proportions of presumptive ovarian and testicular tissue. On day 12 the ovotestes were organized with testicular tissue in the central region and ovarian tissue at the craniad and/or caudad poles. In the more advanced fetuses there was evidence of regression of the ovarian portion, which would account for the testes found in adults. These results are discussed in light of current theories of sex determination and differentiation and what was previously known about gonads of sex mosaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号