首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We studied alterations in the mRNA expression levels of BCL2 (Bcl-2), BCL2L12, BAX, FAS and CASPASE-9 genes in the MCF-7 breast cancer cell line in response to treatment with two anticancer drugs. Cell toxicity was evaluated by the MTT method, trypan blue staining and DNA laddering, whereas the expression levels of the apoptosis-related genes were analysed by RT-PCR using gene-specific primers. In the case of etoposide, down-regulation of the BCL2L12-A gene variant and of CASPASE-9, as well as upregulation of BAX, was observed, whereas treatment of MCF-7 cells with taxol led to down-regulation of the mRNA levels of all genes examined. Our results support the idea that after long-term clinical studies, mRNA expression analysis of BCL2L12 and other members of the BCL2 gene family may serve as useful molecular markers predicting chemotherapy response in breast cancer.  相似文献   

3.
Glioblastoma progression is mainly characterized by intense apoptosis resistance and marked necrosis. Over-expression of BCL2L12, a novel member of Bcl-2 family has been shown in primary glioblastoma. BCL2L12 blocks effective caspase-3/7 maturation and inhibits p53 tumor suppressor, deriving resistance toward apoptosis and inducing extensive cell necrosis. Cisplatin is a major chemotherapeutic agent which has a broad range of anti-neoplastic activities including apoptosis induction. To investigate the effect of cisplatin on the expression of BCL2L12 in glioblastoma cells, two glioblastoma cell lines were treated with different concentrations of cisplatin for 48 h. The cell viability and IC50 was determined using MTT assay. Then, the two glioblastoma cell lines were treated with 48 h IC50 concentration of cisplatin for 24, 48, and 72 h. Apoptosis induction was analyzed by fluorescence microscopy and flow cytometry. Gene expression study was performed on BCL2L12 and TBP as target and internal control genes, respectively. The quantitative real-time polymerase chain reaction results showed that BCL2L12 gene expression was significantly (p?=?0.001) downregulated in the presence of cisplatin. In conclusion, cisplatin treatment induced a time-dependent apoptosis in glioblastoma cells, at least partially via downregulation of BCL2L12 gene expression.  相似文献   

4.
5.
ABSTRACT: BACKGROUND: Arsenic Trioxide (ATO) is effective in about 20% of patients with myelodysplasia (MDS); its mechanisms of action have already been evaluated in vitro, but the in vivo activity is still not fully understood. Since ATO induces apoptosis in in vitro models, we compared the expression of 93 apoptotic genes in patients' bone marrow before and after ATO treatment. For this analysis, we selected 12 patients affected by MDS who received ATO in combination with Ascorbic Acid in the context of the Italian clinical trial NCT00803530, EudracT Number 2005-001321-28. METHODS: Real-time PCR quantitative assays for genes involved in apoptosis were performed using TaqMan(R) Assays in 384-Well Microfluidic Cards "TaqMan(R) Human Apoptosis Array". Quantitative RT-PCR for expression of EVI1 and WT1 genes was also performed. Gene expression values (Ct) were normalized to the median expression of 3 housekeeping genes present in the card (18S, ACTB and GAPDH). RESULTS: ATO treatment induced up-regulation of some pro-apoptotic genes, such as HRK, BAK1, CASPASE-5, BAD, TNFRSF1A, and BCL2L14 and down-regulation of ICEBERG. In the majority of cases with stable disease, apoptotic gene expression profile did not change, whereas in cases with advanced MDS more frequently pro-apoptotic genes were upregulated. Two patients achieved a major response: in the patient with refractory anemia the treatment down-regulated 69% of the pro-apoptotic genes, whereas 91% of the pro-apoptotic genes were up-regulated in the patient affected by refractory anemia with excess of blasts-1. Responsive patients showed a higher induction of BAD than those with stable disease. Finally, WT1 gene expression was down-regulated by the treatment in responsive cases. CONCLUSIONS: These results represent the basis for a possible association of ATO with other biological compounds able to modify the apoptotic pathways, such as inhibitors of the BCL2 family.  相似文献   

6.
7.
Human promyelocytic leukemia HL-60 cells have been used as a model to study both the expression of matrix-metalloproteinases and the mechanisms of programmed cell death. In the present study we examined the expression of these proteases in HL-60 cells stimulated by different apoptotic triggers. As shown by zymography, HL-60 cells released three major isofroms of the matrix-degrading proteases; when the leukemic cells were grown in serum-free conditions, as well as after hyperthermia and methotrexate treatment, we found a significant loss of the constitutive production of the 92 kDa matrix-metalloprotease, with an unequivocable molecular and ultrastructural evidence of programmed cell death. These results suggest that in HL-60 cells the expression/release of matrix metalloproteases can be down-regulated in the presence of the apoptotic-induced alterations, and that the decreased matrix-degrading capacity of this leukemic cell line during apoptosis may reduce its invasive potential.  相似文献   

8.
BCL2 family in DNA damage and cell cycle control   总被引:13,自引:0,他引:13  
Individual BCL2 family members couple apoptosis regulation and cell cycle control in unique ways. Antiapoptotic BCL2 and BCL-x(L) are antiproliferative by facilitating G0. BAX is proapoptotic and accelerates S-phase progression. The dual functions in apoptosis and cell cycle are coordinately regulated by the multi-domain BCL2 family members (MCL-1) and suggest that survival is maintained at the expense of proliferation. The role of BH3-only molecules in cell cycle is more variable. BAD antagonizes both the cell cycle and antiapoptotic functions of BCL2 and BCL-x(L) through BH3 binding. BID has biochemically separable functions in apoptosis and S-phase checkpoint, determined by post-translational modification. p53-induced PUMA is known only to have apoptotic function. Inhibition of apoptosis is oncogenic, whereas promotion of cell cycle arrest is tumor suppressive. Paradoxically, selected BCL2 family members can be both oncogenic and tumor suppressive. Which of the dual functions predominates is lineage specific and context dependent.  相似文献   

9.
In the present study, we investigated whether vascular endothelial growth factor A (VEGFA) plays a critical intraovarian survival role in gonadotropin-dependent folliculogenesis. The effect of an intrabursal administration of a VEGFA antagonist on follicular development, apoptosis, and levels of pro- and antiapoptotic proteins of BCL2 family members (BAX, BCL2, and BCL2L1), as well as of TNFRSF6 (also known as FAS) and FAS ligand (FASLG), was examined. To inhibit VEGFA, a soluble FLT1/Fc Chimera (Trap) was administered to prepubertal eCG-treated rats. Injection of 0.5 mug of Trap per ovary did not change the number of preantral follicles (PFs) or early antral follicles (EAFs); however, it significantly decreased the number of periovulatory follicles 48 h after surgery and significantly increased the number of atretic follicles. No significant differences were found in any stage of the follicles either 12 or 24 h after injection. Cells undergoing DNA fragmentation were quantified by performing TUNEL on ovarian sections. Trap treatment caused a twofold increase in the number of apoptotic cells in EAFs. DNA isolated from antral follicles incubated for 24 h exhibited the typical apoptotic DNA pattern. Follicles obtained from Trap-treated ovaries showed a significant increase in the spontaneous onset of apoptotic DNA fragmentation. The injection of Trap significantly increased the levels of BAX and decreased the levels of BCL2 protein. The ratio of BCL2L1L:BCL2L1s was significantly diminished in follicles obtained from ovaries treated with Trap. No changes in the levels of TNFRSF6 or FASLG were observed after treatment. We concluded that the local inhibition of VEGFA activity appears to produce an increase in ovarian apoptosis through an imbalance among the BCL2 family members, thus leading a larger number of follicles to atresia.  相似文献   

10.
11.
12.
13.
14.
Gastric cancer is one of the most common malignancies worldwide; however, the molecular mechanism in tumorigenesis still needs exploration. BCL2L11 belongs to the BCL-2 family, and acts as a central regulator of the intrinsic apoptotic cascade and mediates cell apoptosis.Although miRNAs have been reported to be involved in each stage of cancer development, the role of miR-24 in GC has not been reported yet. In the present study, miR-24 was found to be up-regulated while the expression of BCL2L11 was inhibited in tumor tissues of GC. Studies from both in vitro and in vivo shown that miR-24 regulates BCL2L11 expression by directly binding with 3′UTR of mRNA, thus promoting cell growth, migration while inhibiting cell apoptosis. Therefore, miR-24 is a novel onco-miRNA that can be potential drug targets for future clinical use.  相似文献   

15.
BCL2 family proteins are important regulators of mitochondrial outer membrane permeabilization (MOMP). In recent years, BCL2 family proteins have also been linked to the regulation of mitochondrial bioenergetics and dynamics. Given their overexpression in breast cancer cells, we sought to explore whether two key members of this family, BCL2 and BCL(X)L impacted on mitochondrial fusion/fission processes. By employing a single cell imaging and RNA sequencing we found that overexpression of BCL2 or BCL(X)L increases mitochondrial dynamics and alters the expression profile of genes involved in this process. Collectively, our data show that overexpression of BCL2 proteins regulates mitochondrial dynamics in breast cancer tumor cells.  相似文献   

16.
It is widely thought that prosurvival BCL2 family members not only inhibit apoptosis, but also block autophagy by directly binding to BECN1/Beclin 1. To distinguish whether BCL2, BCL2L1/BCL-XL, or MCL1 influence autophagy directly, or indirectly, through their effects on apoptosis, we compared normal cells to those lacking BAX and BAK1. In cells able to undergo mitochondria-mediated apoptosis, inhibiting the endogenous prosurvival BCL2 family members induces both autophagy and cell death, but when BAX and BAK1 are deleted, neither inhibiting nor overexpressing BCL2, BCL2L1, or MCL1 causes any detectable effect on LC3B lipidation, LC3B turnover, or autolysosome formation. These results show that prosurvival BCL2 family members influence autophagy only indirectly, by inhibiting activation of BAX and BAK1.  相似文献   

17.
《Autophagy》2013,9(8):1474-1475
It is widely thought that prosurvival BCL2 family members not only inhibit apoptosis, but also block autophagy by directly binding to BECN1/Beclin 1. To distinguish whether BCL2, BCL2L1/BCL-XL, or MCL1 influence autophagy directly, or indirectly, through their effects on apoptosis, we compared normal cells to those lacking BAX and BAK1. In cells able to undergo mitochondria-mediated apoptosis, inhibiting the endogenous prosurvival BCL2 family members induces both autophagy and cell death, but when BAX and BAK1 are deleted, neither inhibiting nor overexpressing BCL2, BCL2L1, or MCL1 causes any detectable effect on LC3B lipidation, LC3B turnover, or autolysosome formation. These results show that prosurvival BCL2 family members influence autophagy only indirectly, by inhibiting activation of BAX and BAK1.  相似文献   

18.
19.
BCL2L12 has been reported to be involved in post-mitochondrial apoptotic events in glioblastoma, but the role of BCL2L12A, a splicing variant of BCL2L12, remains unknown. In this study, we showed that BCL2L12 and BCL2L12A were overexpressed in glioblastoma multiforme (GBM). Large-scale yeast two-hybrid screening showed that BCL2L12 was a GSK3b binding partner in a testis cDNA library. Our data demonstrated that GSK3b interacts with BCL2L12 but not BCL2L12A, whose C terminus lacks a binding region. We found that a BCL2L12153–191 fragment located outside of the C-terminal BH2 motif is responsible for GSK3b binding. In contrast, no interaction was detected between BCL2L12A and GSK3b. In vitro kinase and l-phosphatase assays showed that GSK3b phosphorylates BCL2L12 at S156, while this site is absent on BCL2L12A. Moreover, our data also showed that the BCL2L12153–191 fragment directly interrupted GSK3bmediated Tau phosphorylation in a dose-dependent manner. Ectopic expression of GFP-fused BCL2L12 or BCL2L12A in U87MG cells leads to repression of apoptotic markers and protects against staurosporine (STS) insults, indicating an antiapoptotic role for both BCL2L12 and BCL2L12A. In contrast, no anti-apoptotic ability was seen in BCL2L12(S156A). When BCL2L12-expressing U87MG cells were co-administrated with STS and LiCl, cells underwent apoptosis. This effect could be reversed by LiCl. In short, we established a model to demonstrate that GSK3b interacts with and phosphorylates BCL2L12 and might also affect BCL2L12A to modulate the apoptosis signaling pathway in glioblastoma. These findings suggest that LiCl may be a prospective therapeutic agent against GBM.  相似文献   

20.
Lung cancer is the most frequent cause of cancer-related death in this country for men and women. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21-25 nt long) capable of targeting genes for either degradation of mRNA or inhibition of translation. We identified aberrant expression of 41 miRNAs in lung tumor versus uninvolved tissue. MiR-133B had the lowest expression of miRNA in lung tumor tissue (28-fold reduction) compared to adjacent uninvolved tissue. We identified two members of the BCL-2 family of pro-survival molecules (MCL-1 and BCL2L2 (BCLw)) as predicted targets of miR-133B. Selective over-expression of miR-133B in adenocarcinoma (H2009) cell lines resulted in reduced expression of both MCL-1 and BCL2L2. We then confirmed that miR-133B directly targets the 3′UTRs of both MCL-1 and BCL2L2. Lastly, over-expression of miR-133B induced apoptosis following gemcitabine exposure in these tumor cells. To our knowledge, this represents the first observation of decreased expression of miR-133B in lung cancer and that it functionally targets members of the BCL-2 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号