首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的探讨大鼠运动机能随增龄的变化规律,以及运动对高龄大鼠运动机能的改善作用。方法对26月龄、8月龄和2月龄SD大鼠进行为期2周的中等强度跑台运动干预,测定大鼠运动前后前肢拉力、耐力、躯体向上活动能力及极限速度4个机能指标,进行对比分析。结果 126月龄大鼠组的前肢拉力、耐力、躯体向上活动能力、极限速度均显著低于8月龄组和2月龄组,且后3个指标呈现增龄性下降;226月龄和8月龄组的前肢拉力运动后高于运动前,8月龄组和2月龄组的躯体向上活动能力运动后高于运动前;3运动干预前后4项指标的运动机能总评分进行比较,26月龄组运动后显著高于运动前。结论大鼠的前肢拉力、耐力、躯体向上活动能力及极限速度等4项运动机能指标呈增龄性下降,可作为大鼠运动机能的衰老指标。中等强度的跑台运动能显著改善高龄大鼠总运动机能的下降。  相似文献   

2.
目的:提取与大鼠右前肢运动相关联的初级运动皮层场电位的信号特征,并探讨依据局部场电位(LFP)识别前肢运动行为的可行性。方法:4只SD大鼠通过训练习得压杆取水操作,然后在左右脑初级运动皮层M1区分别植入多通道束状微电极,术后恢复后进行大鼠压杆行为实验,以2 kHz/s速率记录深部脑电信号及压杆状态信号,同步记录行为过程的视频信号。以通道间的差分信号作为局部场电位信号,分析局部场电位信号的时域特征,进行聚类分析。以压杆状态信号和视频分析为判定依据,对聚类结果进行分析。结果:局部场电位信号在大鼠压杆动作时明显增强,不同通道的局部场电位信号幅值、波形有差异,表明与前肢运动相关联的M1区局部场电位信号有空间分布特征;依据阈值准则从局部场电位信号检测压杆行为的检出率为80%。结论:依据局部场电位信号特征对大鼠前肢运动进行检测具有可行性。  相似文献   

3.
实验性偏头痛动物模型c-fos、c-jun基因表达   总被引:9,自引:0,他引:9  
目的 复制实验性偏头痛动物模型并探讨其c -fos、c -jun基因表达。方法 采用CristinaTassorelli硝酸甘油法复制大鼠实验性偏头痛模型。免疫组化ABC法研究偏头痛大鼠脑组织即刻早期基因c -fos、c -jun的表达。结果 硝酸甘油型实验性偏头痛大鼠出现双耳发红、甩头、前肢频繁搔头 ,活动增加等外在表现 ,脑组织c -fos、c -jun基因表达阳性细胞数增加 ,基因表达阳性细胞的面积扩大、灰度降低或变化不大。结论 硝酸甘油型实验偏头痛大鼠模型复制方法简单、重复性较好、脑组织c -fos和c -jun基因异常表达明显 ,可以作为偏头痛治疗药物筛选、药效评价和发病机理研究的动物模型。  相似文献   

4.
在大鼠前肢压杆任务中,同步记录初级运动皮层神经元集群活动信号与压杆的压力信号,分析神经元锋电位发放的时空模式,并用于大鼠前肢运动的解析和预测.数据分析显示在压杆阶段与非压杆阶段大鼠运动皮层神经元锋电位发放模式存在着显著差别,且神经元活动变化先于前肢运动的发生约300~400ms,并可通过与行为的相关性将神经元的发放模式分为4类.研究结果同时显示,两层Elman神经网络可用于神经元集群活动的解码,解码所得到的压力值与系统所采集的压杆压力信号有较好的拟合度,二者间的相关系数可达0.8766.研究表明了运动相关的神经信息处理和表征依赖于初级运动皮层神经元的相互作用和整合,揭示了神经元集群活动在运动信息编码中的重要作用.实验结果也揭示神经元集群活动信号解析后有望用于对外部器械进行直接控制,推动植入式脑-机接口及运动重建等康复技术的发展.  相似文献   

5.
大鼠前肢作业时的皮层慢电位徐峰恽君惕顾晓蓬李斌(中国医学科学院中国协合医科大学基础医学研究所,北京100005)与随意运动相关的皮层慢电位(slowcorticalpotential,SCP)在灵长类已得到广泛的研究。而有关大鼠的资料很少。本文报道...  相似文献   

6.
<正>在人造肾脏、肝脏、心脏先后获得成功后,科学家们再次向人工生物肢体发起冲击并取得了突破。日前,美国麻省总医院(MGH)研究人员描述了一种构建人工生物肢体的方法,并用这种方法成功培育出一个具有血管和肌肉组织的大鼠前肢。此外,他们还提供证据表明,同样的方法也适用于培育灵长类动物的肢体。此次研究可被看作是人类向人工生物肢体再造和移植迈出的第一步。  相似文献   

7.
目的借助于X-射线、CT扫描成像、MRI等医学成像技术评价中成药伤科接骨片对大鼠骨折模型的治疗作用。方法大鼠麻醉后手术分离右前肢桡骨,于中段形成横断的完全骨折,随后随机分为模型组、药物治疗组,另设伪手术组进行平行对照。治疗组按0.33g/kg的剂量灌胃给药,模型组和伪手术组等量灌胃生理盐水,连续给药4周,给药结束后以X射线、CT和MRI图像观察和记录骨折部位的愈合情况。最后麻醉处死动物,经解剖取骨折部位进行抗折力测定和HE染色的病理组织学检查。结果 X射线、CT和MRI检查结果清楚地表明,给药治疗后骨折部位可见有明显的致密性骨痂形成,骨折线模糊不清或消失,多数可见大量的钙盐沉积,趋于愈合,与骨折部位的病理组织学检查结果基本一致。结论借助于医学影像技术可以更加客观地评价药物对大鼠骨折模型的治疗作用,尤以CT四维成像技术更加直观、清晰,值得进一步地推广应用。愈合后的前肢桡骨的抗折力也明显地增强。  相似文献   

8.
目的:观察早期帕金森病(PD)大鼠脑内胶质细胞的免疫反应活性改变。方法:采用6-羟多巴胺(6-OHDA)制备PD早期大鼠模型,实验动物分为早期PD组和对照组。实验动物进行阿朴吗啡诱发旋转运动测试后,进行迈步实验的测试。免疫组织化学观察早期PD发病大鼠脑内星形胶质细胞和小胶质细胞的免疫反应活性改变。结果:早期PD动物在30 min内旋转次数小于7r/min,迈步实验中,与对照组相比,早期PD动物在左前肢从开始迈步至返回鼠笼所需要的总时间和所迈的步数没有明显差异;PD早期大鼠脑内星形胶质细胞和小胶质细胞的免疫反应活性明显增高。结论:早期PD大鼠尽管行为学上没有明显异常改变,但其脑内星形胶质细胞和小胶质细胞出现异常改变,这可能参与早期PD大鼠发病过程。  相似文献   

9.
张明  蔡景霞 《动物学研究》2006,27(4):344-350
采用split-litter法对仔鼠进行分组和处理,共5组NTS组(未经实验人员抓握和标记),PND2—9TS组和PND10—17TS组(分别在仔鼠出生后的2—9天、10—17天,每天短暂抓握和标记仔鼠),PND2—9MS组和PND10—17MS组(分别在仔鼠出生后的2—9天、10—17天,除了按TS组相同方式抓握并在不同部位标记外,每天把仔鼠与母鼠分离1h)。待雌鼠成年后,进行明/暗箱测试和一次性被动回避反应测试。结果发现与NTS组相比,PND2—9TS组和PND10—17TS组的雌鼠在明/暗箱测试中停留于明室的累计时间明显较长,在被动回避作业中的重测试潜伏期也明显较长,表明新生期的触觉刺激经历减少雌性大鼠成年后在新异环境中的焦虑,并改善情绪记忆。与相应TS组相比,MS处理组的所有行为指标都无显著性差异,说明短时间母婴分离对雌鼠成年后的焦虑和情绪记忆无明显影响。结果提示,新生期的触觉刺激和母婴分离经历对仔鼠神经系统的发育产生不同的长期效应。  相似文献   

10.
在15例氯胺酮麻醉的Wistar大鼠利用皮层内微刺激技术测定了躯体的运动皮层代表区。电刺激为350Hz的阴极串脉冲,电流最大值限为80μA。结果表明大多数皮层点诱发对侧肌肉反应。虽然代表区的大小有很大个体差异,分区的相对位置是恒定的。但在分区内部未见分域排列。部分大鼠存在前部前肢区,但无一例发现前部后肢区。比较文献结果提示Wistar大鼠的运动皮层的分化程度比Long-Evans黑顶鼠低。  相似文献   

11.
In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.  相似文献   

12.
Mechanical forces play a key role in crucial cellular processes involving force-bearing biomolecules, as well as in novel single-molecule pulling experiments. We present an exact method that enables one to extrapolate, to low (or zero) forces, entire time-correlation functions and kinetic rate constants from the conformational dynamics either simulated numerically or measured experimentally at a single, relatively higher, external force. The method has twofold relevance: 1), to extrapolate the kinetics at physiological force conditions from molecular dynamics trajectories generated at higher forces that accelerate conformational transitions; and 2), to extrapolate unfolding rates from experimental force-extension single-molecule curves. The theoretical formalism, based on stochastic path integral weights of Langevin trajectories, is presented for the constant-force, constant loading rate, and constant-velocity modes of the pulling experiments. For the first relevance, applications are described for simulating the conformational isomerization of alanine dipeptide; and for the second relevance, the single-molecule pulling of RNA is considered. The ability to assign a weight to each trace in the single-molecule data also suggests a means to quantitatively compare unfolding pathways under different conditions.  相似文献   

13.
Since the wall/cavity ratio of a heart chamber is not a biological constant, fractional cavity-surface motion is not a valid performance index and the stresses most commonly used in the myocardial-mechanics literature are not valid expressions of pulling action or contractility. We have developed a system for analyzing and expressing left-ventricular performance and abilities which avoids these problems. It allows one to estimate the following quantities from left-ventricular image data and arterial pressures: "Fractional midwall excursion", the fractional change in a weighted average of inner- and outer-surface dimensions, which is a valid but preload-dependent expression of performance regardless of wall/cavity ratio. "Fractional midwall excursion rate", fractional midwall excursion divided by EKG-normalized ejection time, which is a relatively preload-independent expression of performance regardless of wall/cavity ratio. "Pressure safety factor", systolic pressure-making ability relative to demanded systolic pressure. "Myocardial fiberstress", the intensity of circumferential pulling force in the wall (pulling force per unit cross-sectional area). "Myocardial growth ability", the anabolic responsiveness to habitual systolic fiberstresses, expressed as the reciprocal of long-term-average systolic fiberstresses. (6) "Contractility", the stress-developing ability of the myocardium, specifically the amplitude of the developed stress-stretch function at peak activation. On the average, these quantities are related as follows: Growth ability determines average systolic fiberstresses; contractility and growth ability (or systolic stress) largely determine safety factor; safety factor largely determines fractional midwall excursion and its rate. We have developed a microcomputer program which evaluates these quantities from image/pressure data and displays them digitally and graphically.  相似文献   

14.
Understanding the penetration mechanisms of carbon nanotube (CNTs)-encapsulated drugs through the phospholipid bilayer cell membrane is an important issue for the development of intracellular drug delivery systems. In the present work, steered molecular dynamics (SMD) simulation was used to explore the possibility of penetration of a polar drug, paclitaxel (PTX), encapsulated inside the CNT, through a dipalmitoylphosphatidylcholine bilayer membrane. The interactions between PTX and CNT and between PTX and the confined water molecules inside the CNT had a significant effect on the penetration process of PTX. The results reveal that the presence of a PTX molecule increases the magnitude of the pulling force. The effect of pulling velocity on the penetration mechanism was also investigated by a series of SMD simulations, and it is shown that the pulling velocity had a significant effect on pulling force and the interaction between lipid bilayer and drug molecule.  相似文献   

15.
This work gives a thermodynamic analysis of outgrowth extraction from the cell body by a pulling force. The results are applied for a case when the pulling force is generated by an external high-frequency electric field. Two equilibrium conditions are analyzed: internal equilibrium of an outgrowth and equilibrium between the outgrowth and the cell body. In both cases the stability of feasible equilibrium states was studied. The work shows that the curvature of an outgrowth equilibrated with a pulling electric force depends on the squared amplitude of the electric field E0(2), on the outgrowth length l and on the transmembrane pressure differential delta P, and that at a sufficiently large transmembrane pressure differential the cylindrical form of the outgrowth loses its stability. Long outgrowths are more stable than short ones. The minimal value of critical pressure differential was estimated. The work also shows that outgrowth extraction from the cell body requires that the applied force exceeds a critical value below which no outgrowth is formed. The value of the electric field at which outgrowth formation is feasible was estimated.  相似文献   

16.
In this paper, a new steered molecular dynamics (SMD) method with adjusting pulling direction is proposed to search an optimum trajectory of ligand dissociation. A multiobjective model and a searching technique based on information entropy with multi-population are developed to optimize the pulling direction. The improved method has been used to dissociate the substrate-bound complex structure of cytochrome P450 3A4-metyrapone. A more favorable dissociation pathway can be gained. The results show that the new pathway obtained by the proposed method has less dissociation time, smaller rupture force and lower energy barrier than that by the conventional SMD.  相似文献   

17.
Contractile properties differ between skeletal, cardiac and smooth muscles as well as between various skeletal muscle fiber types. This functional diversity is thought to be mainly related to different speeds of myosin head pulling cycles, with the molecular mechanism of force generation being essentially the same. In this study, force-generating attachments of myosin heads were investigated by applying small perturbations of myosin head pulling cycles in stepwise stretch experiments on skeletal muscle fibers of different type. Slow fibers (frog tonic and rat slow-twitch) exhibited only a ‘slow-type’ of myosin head attachment over the entire activation range, while fast fibers (frog and rat fast-twitch) displayed a ‘slow-type’ of myosin head attachment at low levels of activation, and an up to 30-times faster type at high levels of activation. These observations indicate that there are qualitative differences between the mechanisms of myosin head attachment in slow and fast vertebrate skeletal muscle fibers.  相似文献   

18.
D'Amore DC  Moreno K  McHenry CR  Wroe S 《PloS one》2011,6(10):e26226
In addition to biting, it has been speculated that the forces resulting from pulling on food items may also contribute to feeding success in carnivorous vertebrates. We present an in vivo analysis of both bite and pulling forces in Varanus komodoensis, the Komodo dragon, to determine how they contribute to feeding behavior. Observations of cranial modeling and behavior suggest that V. komodoensis feeds using bite force supplemented by pulling in the caudal/ventrocaudal direction. We tested these observations using force gauges/transducers to measure biting and pulling forces. Maximum bite force correlates with both body mass and total body length, likely due to increased muscle mass. Individuals showed consistent behaviors when biting, including the typical medial-caudal head rotation. Pull force correlates best with total body length, longer limbs and larger postcranial motions. None of these forces correlated well with head dimensions. When pulling, V. komodoensis use neck and limb movements that are associated with increased caudal and ventral oriented force. Measured bite force in Varanus komodoensis is similar to several previous estimations based on 3D models, but is low for its body mass relative to other vertebrates. Pull force, especially in the ventrocaudal direction, would allow individuals to hunt and deflesh with high success without the need of strong jaw adductors. In future studies, pull forces need to be considered for a complete understanding of vertebrate carnivore feeding dynamics.  相似文献   

19.
A new method of direct and continuous measurement of the spring constant of single molecule or molecular complex is elaborated. To that end the standard force spectroscopy technique with functionalized tips and samples is combined with a small dithering of the tip. The change of the dithering amplitude as a function of the pulling force is measured to extract the spring constant of the complex. The potentialities of this method are illustrated for the experiments with single bovine serum albumin-its polyclonal antibody (Ab-BSA) and fibrinogen-fibrinogen complexes.  相似文献   

20.
In AFM-based single molecule force spectroscopy, it is tacitly assumed that the pulling direction coincides with the end-to-end vector of the molecule fragment being stretched. By systematically varying the position of the attachment point on the substrate relative to the AFM tip, we investigate empirically and theoretically the effect of the pulling geometry on force-extension characteristics of double-stranded DNA. We find that increasing the pulling angle can significantly lower the force of the characteristic overstretching transition and increase the width of the plateau feature beyond the canonical 70%. These effects, when neglected, can adversely affect the interpretation of measured force-extension relationships. We quantitatively evaluate force and extension errors originating from this "pulling angle effect" and stress the need to correct the pulling geometry when stretching rigid molecules with an AFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号