首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A function for the integrin alpha 6 beta 4 in the hemidesmosome.   总被引:20,自引:2,他引:18       下载免费PDF全文
Many epithelial cells appear to use cell-substratum adhesion complexes known as hemidesmosomes as the main means of anchorage to the connective tissue. Initially recognized as distinctive electron-dense images, hemidesmosomes are still poorly understood at the biochemical level. The regulation and mode of their assembly, which is disrupted in certain blistering diseases and is critical to proper wound repair, also remains to be elucidated. The integrin alpha 6 beta 4 is expressed along the basal surface of various epithelial cells. We show here that this integrin localizes to hemidesmosomes as determined by immunoelectron microscopy using antibodies directed against both the extra- and intracytoplasmic domains of alpha 6 beta 4. This result, which agrees with a recent study, suggests a functional role for the alpha 6 beta 4 integrin in the hemidesmosomes. We therefore investigated such a potential role for this integrin using the cultured rat bladder carcinoma cell line 804G, which has the uncommon ability to form hemidesmosomes in vitro when maintained on uncoated glass substrates. By immunoprecipitation and immunofluorescence, we show that 804G cells express alpha 6 beta 4 along their basal surface in a punctate pattern that overlaps with the distribution of hemidesmosomal plaque antigens. However, this pattern is altered when cells are plated in the presence of an antiserum directed against alpha 6 beta 4. Furthermore, no hemidesmosomes are detectable at the ultrastructural level in the alpha 6 beta 4 antibody-treated cells compared with control cells. These results indicate that integrins may play a critical role in assembly and adhesive functions of the hemidesmosome.  相似文献   

2.
The cytoplasmic domain of beta4 integrin contains two pairs of fibronectin-like repeats separated by a connecting segment. The connecting segment harbors a putative tyrosine activation motif in which tyrosines 1422 and 1440 are phosphorylated in response to alpha6beta4 binding to laminin-5. Primary beta4-null keratinocytes, obtained from a newborn suffering from lethal junctional epidermolysis bullosa, were stably transduced with retroviruses carrying a full-length beta4 cDNA or a beta4 cDNA with phenylalanine substitutions at Tyr-1422 and Tyr-1440. Hemidesmosome assembly was evaluated on organotypic skin cultures. beta4-corrected keratinocytes were indistinguishable from normal cells in terms of alpha6beta4 expression, the localization of hemidesmosome components, and hemidesmosome structure and density, suggesting full genetic and functional correction of beta4-null keratinocytes. In cultures generated from beta4(Y1422F/Y1440F) keratinocytes, beta4 mutants as well as alpha6 integrin, HD1/plectin, and BP180 were not concentrated at the dermal-epidermal junction. Furthermore, the number of hemidesmosomes was strikingly reduced as compared with beta4-corrected keratinocytes. The rare hemidesmosomes detected in beta4(Y1422F/Y1440F) cells were devoid of sub-basal dense plates and of inner cytoplasmic plaques with keratin filament insertion. Collectively, our data demonstrate that the beta4 tyrosine activation motif is not required for the localization of alpha6beta4 at the keratinocyte plasma membrane but is essential for optimal assembly of bona fide hemidesmosomes.  相似文献   

3.
A transmembrane extracellular matrix receptor of the integrin family, alpha 6 beta 4, is a component of the hemidesmosome, an adhesion complex of importance in epithelial cell-connective tissue attachment (Stepp, M. A., S. Spurr-Michaud, A. Tisdale, J. Elwell, and I. K. Gipson. 1990. Proc. Natl. Acad. Sci. USA. 87:8970-8974; Jones, J. C. R., M. A. Kurpakus, H. M. Cooper, and V. Quaranta. 1991. Cell Regulation. 2:427-438). Cytosolic components of hemidesmosomes include bullous pemphigoid (BP) antigens while extracellular components include a 125-kD component of anchoring filaments (CAF) and collagen type VII-containing anchoring fibrils. We have monitored the incorporation of the alpha 6 beta 4 integrins into forming hemidesmosomes in an in vitro wound-healing explant model. In epithelial cells recently migrated from the edges of unwounded sites over bare connective tissue, alpha 6 beta 4 first appears along the entire cell surface. At this stage, these cells contain little or no cytosolic hemidesmosomal components, at least as detectable by immunofluorescence using BP autoantibodies, whereas they are already positive for laminin and CAF. At a later stage, as cells become positive for cytosolic hemidesmosome components such as BP antigens as well as collagen type VII, alpha 6 beta 4 becomes concentrated along the basal pole of the epithelial cell where it abuts the connective tissue of the explant. Polyclonal antibodies to beta 4 do not interfere with the migration of epithelial cells in the explant. However, they prevent assembly of hemidesmosomal complexes and inhibit expression of collagen type VII in cells that have migrated over wound areas. In addition, they induce disruption of established hemidesmosomes in nonmigrating cells of the unwounded area of the explant. Monoclonal antibodies to alpha 6 have a more dramatic effect, since they completely detach epithelial cells in the unwounded area of the explant. Antibodies to CAF also detach epithelial cells in unwounded areas, apparently by inducing separation between epithelium and connective tissue at the lamina lucida of the basement membrane zone. These results suggest a model whereby polarization of alpha 6 beta 4 to the basal surface of the cells, perhaps induced by a putative anchoring filament-associated ligand, triggers assembly of hemidesmosome plaques.  相似文献   

4.
Upon ligand binding, the alpha6beta4 integrin becomes phosphorylated on tyrosine residues and combines sequentially with the adaptor molecules Shc and Grb2, linking to the ras pathway, and with cytoskeletal elements of hemidesmosomes. Since alpha6beta4 is expressed in a variety of tissues regulated by the EGF receptor (EGFR), we have examined the effect of EGF on the cytoskeletal and signaling functions of alpha6beta4. Experiments of immunoblotting with anti-phosphotyrosine antibodies and immunoprecipitation followed by phosphoamino acid analysis and phosphopeptide mapping showed that activation of the EGFR causes phosphorylation of the beta4 subunit at multiple tyrosine residues, and this event requires ligation of the integrin by laminins or specific antibodies. Immunoprecipitation experiments indicated that stimulation with EGF does not result in association of alpha6beta4 with Shc. In contrast, EGF can partially suppress the recruitment of Shc to ligated alpha6beta4. Immunofluorescent analysis revealed that EGF treatment does not induce increased assembly of hemidesmosomes, but instead causes a deterioration of these adhesive structures. Finally, Boyden chamber assays indicated that exposure to EGF results in upregulation of alpha6beta4-mediated cell migration toward laminins. We conclude that EGF-dependent signals suppress the association of activated alpha6beta4 with both signaling and cytoskeletal molecules, but upregulate alpha6beta4-dependent cell migration. The changes in alpha6beta4 function induced by EGF may play a role during wound healing and tumorigenesis.  相似文献   

5.
We have examined the mechanism and functional significance of hemidesmosome disassembly during normal epithelial cell migration and squamous carcinoma invasion. Our findings indicate that a fraction of EGF receptor (EGF-R) combines with the hemidesmosomal integrin alpha6beta4 in both normal and neoplastic keratinocytes. Activation of the EGF-R causes tyrosine phosphorylation of the beta4 cytoplasmic domain and disruption of hemidesmosomes. The Src family kinase inhibitors PP1 and PP2 prevent tyrosine phosphorylation of beta4 and disassembly of hemidesmosomes without interfering with the activation of EGF-R. Coimmunoprecipitation experiments indicate that Fyn and, to a lesser extent, Yes combine with alpha6beta4. By contrast, Src and Lck do not associate with alpha6beta4 to a significant extent. A dominant negative form of Fyn, but not Src, prevents tyrosine phosphorylation of beta4 and disassembly of hemidesmosomes. These observations suggest that the EGF-R causes disassembly of hemidesmosomes by activating Fyn, which in turn phosphorylates the beta4 cytoplasmic domain. Neoplastic cells expressing dominant negative Fyn display increased hemidesmosomes and migrate poorly in vitro in response to EGF. Furthermore, dominant negative Fyn decreases the ability of squamous carcinoma cells to invade through Matrigel in vitro and to form lung metastases following intravenous injection in nude mice. These results suggest that disruption of hemidesmosomes mediated by Fyn is a prerequisite for normal keratinocyte migration and squamous carcinoma invasion.  相似文献   

6.
In this study, we used clone A, a human colon carcinoma cell line, to characterize those integrins that mediate colon carcinoma adhesion to laminin. Monoclonal antibodies specific for the human beta 1 subunit inhibited clone A adhesion to laminin. They also precipitated a complex of surface proteins that exhibited an electrophoretic behavior characteristic of alpha 2 beta 1 and alpha 3 beta 1. A monoclonal antibody specific for alpha 2 (PIH5) blocked clone A adhesion to laminin, as well as to collagen I. An alpha 3-specific antibody (P1B5) had no effect on clone A adhesion to laminin, even though it can block the adhesion of other cell types to laminin. Thus, the alpha 2 beta 1 integrin can function as both a laminin and collagen I receptor on clone A cells. Although these cells express alpha 3 beta 1, an established laminin receptor, they do not appear to use it to mediate laminin adhesion. In addition, the monoclonal antibody GoH3, which recognizes the alpha 6 integrin subunit, also inhibited carcinoma adhesion to laminin but not to fibronectin or collagen I. This antibody precipitated the alpha 6 subunit in association with the beta 4 subunit. There was no evidence of alpha 6 beta 1 association on these cells. In summary, the results obtained in this study indicate that multiple integrin alpha subunits, in association with two distinct beta subunits, are involved in colon carcinoma adhesion to laminin. Based on the behavior of alpha 3 beta 1 and alpha 2 beta 1, the results also suggest that cells can regulate the ability of a specific integrin to mediate adhesion.  相似文献   

7.
Within each hemidesmosome, alpha6beta4 integrin plays a crucial role in hemidesmosome assembly by binding to laminin-5 in the basement membrane zone of epithelial tissue. Recent analyses have implicated "specificity-determining loops" (SDLs) in the I-like domain of beta integrin in regulating ligand binding. Here, we investigated the function of an SDL-like motif within the extracellular I-like domain of beta4 integrin. We generated point mutations within the SDL of beta4 integrin tagged with green fluorescent protein (GFP-beta4K150A and GFP-beta4Q155L). We also generated a mutation within the I-like domain of the beta4 integrin, lying outside the SDL region (GFP-beta4V284E). We transfected constructs encoding the mutated beta4 integrins and a GFP-conjugated wild type beta4 integrin (GFP-beta4WT) into 804G cells, which assemble hemidesmosomes, and human endothelial cells, which express little endogenous beta4 integrin. In transfected 804G cells, GFP-beta4WT and GFP-beta4V284E colocalize with hemidesmosome proteins, whereas hemidesmosomal components in cells expressing GFP-beta4K150A and GFP-beta4Q155L are aberrantly localized. In endothelial cells, GFP-beta4WT and mutant proteins are co-expressed at the cell surface with alpha6 integrin. When transfected endothelial cells are plated onto laminin-5 matrix, GFP-beta4WT and GFP-beta4V284E localize with laminin-5, whereas GFP-beta4K150A and GFP-beta4Q155L do not. GFP-beta4WT and GFP-beta4V284E expressed in endothelial cells associate with the adaptor protein Shc when the cells are stimulated with laminin-5. However, GFP-beta4K150A and GFP-beta4Q155L fail to associate with Shc even when laminin-5 is present, thus impacting downstream signaling. These results provide evidence that the SDL segment of the beta4 integrin subunit is required for ligand binding and is involved in outside-in signaling.  相似文献   

8.
Although the regulation of hemidesmosome dynamics during processes such as epithelial migration, wound healing, and carcinoma invasion is important, the mechanisms involved are poorly understood. The integrin alpha 6 beta 4 is an essential component of the hemidesmosome and a target of such regulation. Epidermal growth factor (EGF) can induce hemidesmosome disassembly by a mechanism that involves serine phosphorylation of the beta 4 integrin subunit. Using a combination of biochemical and mutational analyses, we demonstrate that EGF induces the phosphorylation of three specific serine residues (S(1356), S(1360), and S(1364)) located within the connecting segment of the beta 4 subunit and that phosphorylation on these residues accounts for the bulk of beta 4 phosphorylation stimulated by EGF. Importantly, phosphorylation of these serines is critical for the ability of EGF to disrupt hemidesmosomes. Using COS-7 cells, which assemble hemidesmosomes type II upon exogenous expression of the alpha 6 beta 4 integrin, we observed that expression of a beta 4 construct containing Ser-->Ala mutations of S(1356), S(1360), and S(1364) reduced the ability of EGF to disrupt hemidesmosomes and that this effect appears to involve cooperation among these phosphorylation sites. Moreover, expression of Ser-->Asp mutants that mimic constitutive phosphorylation reduced hemidesmosome formation. Protein kinase C-alpha (PKC-alpha) is the kinase responsible for phosphorylating at least two of these serines, based on in vitro kinase assays, peptide mapping, and mutational analysis. Together, these results highlight the importance of serine phosphorylation in regulating type II hemidesmosome disassembly, implicate a cluster of serine residues within the connecting segment of beta 4, and argue for a key role for PKC-alpha in regulating these structures.  相似文献   

9.
Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium.  相似文献   

10.
The alpha 6 beta 4 integrin is structurally distinct from all the other known integrins because the cytoplasmic domain of beta 4 is unusually large and contains four type III fibronectin-like modules toward its C-terminus. To examine the function of the beta 4 cytoplasmic tail, we have expressed full-length and truncated human beta 4 cDNAs in rat bladder epithelial 804G cells, which form hemidesmosome-like adhesions in vitro. The cDNA encoded wild-type beta 4 subunit associated with endogenous alpha 6 and was recruited at the cell surface within hemidesmosome-like adhesions. A recombinant form of beta 4, lacking almost the entire cytoplasmic domain associated with alpha 6, reached the cell surface but remained diffusely distributed. A beta 4 molecule lacking almost the entire extracellular portion did not associate with alpha 6 but was correctly targeted to the hemidesmosome-like adhesions. Thus, the cytoplasmic portion of beta 4 contains sequences that are required and may be sufficient for the assembly of the alpha 6 beta 4 integrin into hemidesmosomes. To localize these sequences we examined the properties of additional mutant forms of beta 4. A truncated beta 4 subunit, lacking the most C-terminal pair of type III fibronectin homology domains, was incorporated into hemidesmosome-like adhesions, but another recombinant beta 4 molecule, lacking both pairs of type III fibronectin repeats, was not. Finally a recombinant beta 4 molecule, which was created by adjoining the region of the cytoplasmic domain including all type III repeats to the transmembrane segment, was efficiently recruited in hemidesmosome-like adhesions. Taken together these results suggest that the assembly of the alpha 6 beta 4 integrin into hemidesmosomes is mediated by a 303-amino acid region of beta 4 tail that comprises the first pair of type III fibronectin repeats and the segment between the second and third repeats. These data imply a function of a specific segment of the beta 4 cytoplasmic domain in interaction with cytoskeletal components of hemidesmosomes.  相似文献   

11.
We have examined the mechanism of signal transduction by the hemidesmosomal integrin alpha 6 beta 4, a laminin receptor involved in morphogenesis and tumor progression. Immunoprecipitation and immune complex kinase assays indicated that antibody- or laminin-induced ligation of alpha 6 beta 4 causes tyrosine phosphorylation of the beta 4 subunit in intact cells and that this event is mediated by a protein kinase(s) physically associated with the integrin. Co-immunoprecipitation and GST fusion protein binding experiments showed that the adaptor protein Shc forms a complex with the tyrosine-phosphorylated beta 4 subunit. Shc is then phosphorylated on tyrosine residues and recruits the adaptor Grb2, thereby potentially linking alpha 6 beta 4 to the ras pathway. The beta 4 subunit was found to be phosphorylated at multiple tyrosine residues in vivo, including a tyrosine-based activation motif (TAM) resembling those found in T and B cell receptors. Phenylalanine substitutions at the beta 4 TAM disrupted association of alpha 6 beta 4 with hemidesmosomes, but did not interfere with tyrosine phosphorylation of Shc and recruitment of Grb2. These results indicate that signal transduction by the alpha 6 beta 4 integrin is mediated by an associated tyrosine kinase and that phosphorylation of distinct sites in the beta 4 tail mediates assembly of the hemidesmosomal cytoskeleton and recruitment of Shc/Grb2.  相似文献   

12.
The ligand specificity of the alpha 3A beta 1 integrin was analyzed using K562 cells transfected with full-length alpha 3A cDNA and was compared with that of alpha 6A beta 1 in similarly transfected K562 cells. Clones were obtained that showed comparable surface expression of either alpha 3A beta 1 or alpha 6A beta 1 integrins. Those expressing alpha 3A beta 1 attached to and spread on immunopurified human kalinin and cellular matrices containing human kalinin, which is a particular isoform of laminin. In addition, alpha 3A transfectants adhered to bovine kidney laminins possessing a novel A chain variant. Binding to kalinin was blocked by a monoclonal antibody against the A chain constituent of kalinin and adhesion to both kalinin and kidney laminins by anti-alpha 3 and beta 1 monoclonal antibodies. The alpha 3A transfected cells bound more strongly to kalinin and bovine kidney laminins after treatment with the beta 1 stimulatory antibody TS2/16. A distinctly weaker and activation-dependent adhesion of alpha 3A transfectants was observed on human placental laminins possessing the Am chain variant (merosin), and no adhesion occurred on bovine heart laminins and murine EHS tumor laminin. Further inactive substrates were fibronectin, nidogen, and collagen types IV and VI, indicating that the alpha 3A beta 1 integrin is a much less promiscuous receptor than thought before. By contrast, alpha 6A transfected cells adhered to all laminin isoforms when stimulated with TS2/16. Adhesion also occurred only on bovine kidney laminins in the absence of TS2/16. These results demonstrate that both alpha 3A beta 1 and alpha 6A beta 1 integrins are typical laminin receptors but that their affinity and activation dependence for binding to various laminin isoforms differ considerably.  相似文献   

13.
Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion.  相似文献   

14.
Hemidesmosomes are multiprotein adhesion complexes that promote epithelial stromal attachment in stratified and complex epithelia. Modulation of their function is of crucial importance in a variety of biological processes, such as differentiation and migration of keratinocytes during wound healing and carcinoma invasion, in which cells become detached from the substrate and acquire a motile phenotype. Although much is known about the signaling potential of the alpha6beta4 integrin in carcinoma cells, the events that coordinate the disassembly of hemidesmosomes during differentiation and wound healing remain unclear. The binding of alpha6beta4 to plectin has a central role in hemidesmosome assembly and it is becoming clear that disrupting this interaction is a crucial event in hemidesmosome disassembly. In addition, further insight into the functional interplay between alpha3beta1 and alpha6beta4 has contributed to our understanding of hemidesmosome disassembly and cell migration.  相似文献   

15.
The presence of many laminin receptors of the beta1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin alpha6beta4 and dystroglycan. We therefore tested the binding of a beta1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin alpha6Abeta4A variant. GD25 beta1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin alpha6 antibody, but not by a dystroglycan antibody. Hence, integrin alpha6Abeta4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin alpha6Abeta4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin alpha6Abeta4A.  相似文献   

16.
In normal epithelial cells, integrin α(6)β(4) is abundantly expressed and forms hemidesmosomes, which is a cellular structure that mediates cell-extracellular matrix binding. In many types of cancer cells, integrin α(6)β(4) is up-regulated, laminin is cleaved, and hemidesmosomes are disrupted, eventually causing an enhancement of cancer cell movement and facilitation of their invasion. We previously showed that the immunoglobulin-like cell adhesion molecule Necl-2 (Nectin-like molecule 2), known as a tumor suppressor, inhibits cancer cell movement by suppressing the ErbB3/ErbB2 signaling. We show here that Necl-2 interacts in cis with integrin α(6)β(4). The binding of Necl-2 with integrin β(4) was mediated by its extracellular region. In human colorectal adenocarcinoma Caco-2 cells, integrin α(6)β(4) was localized at hemidesmosomes. Small interfering RNA-mediated suppression of Necl-2 expression enhanced the phorbol ester-induced disruption of the integrin α(6)β(4) complex at hemidesmosomes, whereas expression of Necl-2 suppressed the disruption of this structure. These results indicate that tumor-suppressive functions of Necl-2 are mediated by the stabilization of the hemidesmosome structure in addition to the inhibition of the ErbB3/ErbB2 signaling.  相似文献   

17.
The involvement of integrins in mediating interaction of cells to well-characterized proteolytic fragments (P1, E3, and E8) of laminin was assessed by antibody blocking studies. Cell adhesion to fragment P1 was affected by mAbs against the integrin beta 1 and beta 3 subunits and furthermore could be prevented completely by a synthetic peptide containing the Arg-Gly-Asp sequence. Because the beta 3 antibody-sensitive cell lines expressed the vitronectin receptor (alpha v beta 3) at high levels, the involvement of this receptor in cell adhesion to P1 is strongly suggested. Integrin-mediated cell adhesion to E3 is of low affinity and was inhibited by antibodies against the integrin beta 1 subunit. In contrast, adhesion of some cell types to E3 was not or only partially sensitive to inhibition by anti-integrin subunit antibodies. Cell adhesion to E8 was blocked completed by integrin alpha 6 or beta 1 antibodies. The alpha 6-specific antibody did not inhibit cell adhesion to E3 or P1. Furthermore, the antibody only blocked adhesion to laminin of those cells that adhered exclusively to the E8 fragment. In addition, expression of alpha 6 beta 1 was closely correlated with the ability of cells to bind to the E8 fragment of laminin. These results indicate that the alpha 6 beta 1 integrin is a specific receptor for the E8 fragment of laminin. Many cell types expressed, instead of or in addition to alpha 6 beta 1 the recently described integrin alpha 6 beta 4. Although the ligand of alpha 6 beta 4 was not identified, it must be different from that of alpha 6 beta 1, because cells that express alpha 6 beta 4, but not alpha 6 beta 1, do not adhere to E8, and cell adhesion to E8 was specifically blocked by beta 1 specific antibodies. In conclusion, the data indicate that distinct integrin receptors belonging to the beta 1 or beta 3 subfamily are involved in adhesion of cells to the various laminin fragments. Adhesion to E3 may also be brought about by other receptor molecules, possibly proteoglycans, not belonging to the integrin family.  相似文献   

18.
The integrin alpha6beta4 is an essential component of hemidesmosomes but it also plays a dynamic role in invasive carcinoma cells. The cytoplasmic tail of the beta4 subunit is uniquely large among integrins and includes two pairs of fibronectin type III domains separated by a connecting segment. Here we describe the crystal structure of the first tandem domain pair, a module that is critical for alpha6beta4 function. The structure reveals a novel interdomain interface and candidate protein-binding sites, including a large acidic cleft formed from the surfaces of both domains and a prominent loop that is reminiscent of the RGD integrin-binding loop of fibronectin. This is the first crystal structure of either a hemidesmosome component or an integrin cytoplasmic domain, and it will enable the intracellular functions of alpha6beta4 to be dissected at the atomic level.  相似文献   

19.
The alpha 6 beta 4 integrin and epithelial cell migration.   总被引:1,自引:0,他引:1  
Although the involvement of alpha 6 beta 4, an integrin laminin receptor, in hemidesmosome organization has dominated the study of this integrin, recent studies are revealing novel functions for alpha 6 beta 4 in the migration of epithelial and carcinoma cells. The engagement of laminin by alpha 6 beta 4 can stabilize actin-rich protrusions and mediate traction forces necessary for cell movement. This integrin also has a significant impact on signaling molecules that stimulate migration and invasion, especially PI3-K and Rho GTPases. Activation of PI3-K by alpha 6 beta 4 enhances the formation of actin protrusions, and it may stimulate the function of other integrins, such as alpha 3 beta 1, that are also important for epithelial migration. Signaling through alpha 6 beta 4 may not always depend on the adhesive functions of this integrin, a possibility that has profound implications for migration and invasion because it implies that the ability of alpha 6 beta 4 to stimulate these processes is not limited to specific matrix environments.  相似文献   

20.
We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the alpha6beta4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express alpha6beta4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the alpha6beta4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis ( approximately 1 ng/ml), the alpha6beta4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained alpha6beta4 in association with F-actin. Importantly, we demonstrate that this mobilization of alpha6beta4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-alpha and that it is associated with the phosphorylation of the beta4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin-rich cell protrusions that mediate alpha6beta4-dependent cell movement but also the disruption of alpha6beta4-containing hemidesmosomes by protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号