首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gsCi curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gsCi response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past.  相似文献   

2.
In the present study the response of stomatal conductance (gs) to increasing leaf‐to‐air vapour pressure difference (D) in early season C3 (Bromus japonicus) and late season C4 (Bothriochloa ischaemum) grasses grown in the field across a range of CO2 (200–550 µmol mol?1) was examined. Stomatal sensitivity to D was calculated as the slope of the response of gs to the natural log of externally manipulated D (dgs/dlnD). Increasing D and CO2 significantly reduced gs in both species. Increasing CO2 caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO2 for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which gs varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non‐hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO2 (Ci/Ca) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO2 had the greatest effect on gs and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO2 were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C3 to C4 photosynthesis. Interspecific variation in the response of gs to D therefore has implications for predicting seasonal ecosystem responses to CO2.  相似文献   

3.
Atmospheric CO2 (Ca) concentration has increased significantly during the last 20 000 years, and is projected to double this century. Despite the importance of belowground processes in the global carbon cycle, community‐level and single species root responses to rising Ca are not well understood. We measured net community root biomass over 3 years using ingrowth cores in a natural C3–C4 grassland exposed to a gradient of Ca from preglacial to future levels (230–550 μmol mol?1). Root windows and minirhizotron tubes were installed below naturally occurring stands of the C4 perennial grass Bothriochloa ischaemum and its roots were measured for respiration, carbohydrate concentration, specific root length (SRL), production, and lifespan over 2 years. Community root biomass increased significantly (P<0.05) with Ca over initial conditions, with linear or curvilinear responses depending on sample date. In contrast, B. ischaemum produced significantly more roots at subambient than elevated Ca in minirhizotrons. The lifespan of roots with five or more neighboring roots in minirhizotron windows decreased significantly at high Ca, suggesting that after dense root growth depletes soil resource patches, plants with carbon surpluses readily shed these roots. Root respiration in B. ischaemum showed a curvilinear response to Ca under moist conditions in June 2000, with the lowest rates at Ca<300 μmol mol?1 and peak activity at 450 μmol mol?1 in a quadratic model. B. ischaemum roots at subambient Ca had higher SRLs and slightly higher carbohydrate concentrations than those at higher Ca, which may be related to drier soils at low Ca. Our data emphasize that belowground responses of plant communities to Ca can be quite different from those of the individual species, and suggest that complex interactions between and among roots and their immediate soil environment influence the responses of root physiology and lifespan to changing Ca.  相似文献   

4.
Plants may be more sensitive to carbon dioxide (CO2) enrichment at subambient concentrations than at superambient concentrations, but field tests are lacking. We measured soil‐water content and determined xylem pressure potentials and δ13C values of leaves of abundant species in a C3/C4 grassland exposed during 1997–1999 to a continuous gradient in atmospheric CO2 spanning subambient through superambient concentrations (200–560 µmol mol2?1). We predicted that CO2 enrichment would lessen soil‐water depletion and increase xylem potentials more over subambient concentrations than over superambient concentrations. Because water‐use efficiency of C3 species (net assimilation/leaf conductance; A/g) typically increases as soils dry, we hypothesized that improvements in plant‐water relations at higher CO2 would lessen positive effects of CO2 enrichment on A/g. Depletion of soil water to 1.35 m depth was greater at low CO2 concentrations than at higher CO2 concentrations during a mid‐season drought in 1998 and during late‐season droughts in 1997 and 1999. During droughts each year, mid‐day xylem potentials of the dominant C4 perennial grass (Bothriochloa ischaemum (L.) Keng) and the dominant C3 perennial forb (Solanum dimidiatum Raf.) became less negative as CO2 increased from subambient to superambient concentrations. Leaf A/g—derived from leaf δ13C values—was insensitive to feedbacks from CO2 effects on soil water and plant water. Among most C3 species sampled—including annual grasses, perennial grasses and perennial forbs—A/g increased linearly with CO2 across subambient concentrations. Leaf and air δ13C values were too unstable at superambient CO2 concentrations to reliably determine A/g. Significant changes in soil‐ and plant‐water relations over subambient to superambient concentrations and in leaf A/g over subambient concentrations generally were not greater over low CO2 than over higher CO2. The continuous response of these variables to CO2 suggests that atmospheric change has already improved water relations of grassland species and that periodically water‐limited grasslands will remain sensitive to CO2 enrichment.  相似文献   

5.
Stomatal function mediates physiological trade‐offs associated with maintaining a favourable H2O balance in leaf tissues while acquiring CO2 as a photosynthetic substrate. The C3 and C4 species appear to have different patterns of stomatal response to changing light conditions, and variation in this behaviour may have played a role in the functional diversification of the different photosynthetic pathways. In the current study, we used gain analysis theory to characterize the stomatal conductance response to light intensity in nine different C3, C4 and C3‐C4 intermediate species Flaveria species. The response of stomatal conductance (gs) to a change in light intensity represents both a direct (related to a change in incident light intensity, I) and indirect (related to a change in intercellular CO2 concentration, Ci) response. The slope of the line relating the change in gs to Ci was steeper in C4 species, compared with C3 species, with C3‐C4 species having an intermediate response. This response reflects the greater relative contribution of the indirect versus direct component of the gs versus I response in the C4 species. The C3‐C4 species, Flaveria floridana, exhibited a C4‐like response whereas the C3‐C4 species, Flaveria sonorensis and Flaveria chloraefolia, exhibited C3‐like responses, similar to their hypothesized position along the evolutionary trajectory of the development of C4 photosynthesis. There was a positive correlation between the relative contribution of the indirect component of the gs versus I response and water use efficiency when evaluated across all species. Assuming that the C3‐C4 intermediate species reflect an evolutionary progression from fully expressed C3 ancestors, the results of the current study demonstrate an increase in the contribution of the indirect component of the gs versus I response as taxa evolve toward the C4 extreme. The greater relative contribution of the indirect component of the stomatal response occurs through both increases in the indirect stomatal components and through decreases in the direct. Increases in the magnitude of the indirect component may be related to the maintenance of higher water use efficiencies in the intermediate evolutionary stages, before the appearance of fully integrated C4 photosynthesis.  相似文献   

6.
Leaves of twelve C3 species and six C4 species were examined to understand better the relationship between mesophyll cell properties and the generally high photosynthetic rates of these plants. The CO2 diffusion conductance expressed per unit mesophyll cell surface area (gCO2cell) cell was determined using measurements of the net rate of CO2 uptake, water vapor conductance, and the ratio of mesophyll cell surface area to leaf surface area (Ames/A). Ames/A averaged 31 for the C3 species and 16 for the C4 species. For the C3 species gCO2cell ranged from 0.12 to 0.32 mm s-1, and for the C4 species it ranged from 0.55 to 1.5 mm s-1, exceeding a previously predicted maximum of 0.5 mm s-1. Although the C3 species Cammissonia claviformis did not have the highest gCO2cell, the combination of the highest Ames and highest stomatal conductance resulted in this species having the greatest maximum rate of CO2 uptake in low oxygen, 93 μmol m-2 s-1 (147 mg dm-2 h-1). The high gCO2cell of the C4 species Amaranthus retroflexus (1.5 mm s-1) was in part attributable to its thin cell wall (72 nm thick).  相似文献   

7.
A critical appraisal of a combined stomatal-photosynthesis model for C3 plants   总被引:13,自引:13,他引:0  
Gas-exchange measurements on Eucalyptus grandis leaves and data extracted from the literature were used to test a semi-empirical model of stomatal conductance for CO2 gSc=go+a1A/(cs-I) (1+Ds/Do)] where A is the assimilation rate; Ds and cs are the humidity deficit and the CO2 concentration at the leaf surface, respectively; g0 is the conductance as A → 0 when leaf irradiance → 0; and D0 and a1 are empirical coefficients. This model is a modified version of gsc=a1A hs/cs first proposed by Ball, Woodrow & Berry (1987, in Progress in Photosynthesis Research, Martinus Mijhoff, Publ., pp. 221–224), in which hs is relative humidity. Inclusion of the CO2 compensation point, τ, improved the behaviour of the model at low values of cs, while a hyperbolic function of Ds for humidity response correctly accounted for the observed hyperbolic and linear variation of gsc and ci/cs as a function of Ds, where Ci is the intercellular CO2 concentration. In contrast, use of relative humidity as the humidity variable led to predictions of a linear decrease in gsc and a hyperbolic variation in ci/cs as a function of Ds, contrary to data from E. grandis leaves. The revised model also successfully described the response of stomata to variations in A, Ds and cs for published responses of the leaves of several other species. Coupling of the revised stomatal model with a biochemical model for photosynthesis of C3 plants synthesizes many of the observed responses of leaves to light, humidity deficit, leaf temperature and CO2 concentration. Best results are obtained for well-watered plants.  相似文献   

8.
The magnitude of changes in carboxylation capacity in dominant plant species under long‐term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free‐air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a grassland and a desert. Among species and across herb, tree and shrub growth forms there were significant enhancements in CO2 assimilation (A) by +40±5% in elevated pCa (49.5–57.1 Pa), although there were also significant reductions in photosynthetic capacity in elevated pCa in some species. Photosynthesis at a common pCa (Aa) was significantly reduced in five species growing under elevated pCa, while leaf carboxylation capacity (Vcmax) was significantly reduced by elevated pCa in seven species (change of ?19±3% among these species) across different growth forms and FACE sites. Adjustments in Vcmax with elevated pCa were associated with changes in leaf N among species, and occurred in species with the highest leaf N. Elevated pCa treatment did not affect the mass‐based relationships between A or Vcmax and N, which differed among herbs, trees and shrubs. Thus, effects of elevated pCa on leaf C assimilation and carboxylation capacity occurred largely through changes in leaf N, rather than through elevated pCa effects on the relationships themselves. Maintenance of leaf carboxylation capacity among species in elevated pCa at these sites depends on maintenance of canopy N stocks, with leaf N depletion associated with photosynthetic capacity adjustments. Since CO2 responses can only be measured experimentally on a small number of species, understanding elevated CO2 effects on canopy Nm and Na will greatly contribute to an ability to model responses of leaf photosynthesis to atmospheric CO2 in different species and plant growth forms.  相似文献   

9.
Elevated atmospheric carbon dioxide (Ca) usually reduces stomatal conductance, but the effects on plant transpiration in the field are not well understood. Using constant‐power sap flow gauges, we measured transpiration from Quercus myrtifolia Willd., the dominant species of the Florida scrub‐oak ecosystem, which had been exposed in situ to elevated Ca (350 µmol mol ? 1 above ambient) in open‐top chambers since May 1996. Elevated Ca reduced average transpiration per unit leaf area by 37%, 48% and 49% in March, May and October 2000, respectively. Temporarily reversing the Ca treatments showed that at least part of the reduction in transpiration was an immediate, reversible response to elevated Ca. However, there was also an apparent indirect effect of Ca on transpiration: when transpiration in all plants was measured under common Ca, transpiration in elevated Ca‐grown plants was lower than that in plants grown in normal ambient Ca. Results from measurements of stomatal conductance (gs), leaf area index (LAI), canopy light interception and correlation between light and gs indicated that the direct, reversible Ca effect on transpiration was due to changes in gs caused by Ca, and the indirect effect was caused mainly by greater self‐shading resulting from enhanced LAI, not from stomatal acclimation. By reducing light penetration through the canopy, the enhanced self‐shading at elevated Ca decreased stomatal conductance and transpiration of leaves at the middle and bottom of canopy. This self‐shading mechanism is likely to be important in ecosystems where LAI increases in response to elevated Ca.  相似文献   

10.
Net grassland carbon flux over a subambient to superambient CO2 gradient   总被引:2,自引:0,他引:2  
Increasing atmospheric CO2 concentrations may have a profound effect on the structure and function of plant communities. A previously grazed, central Texas grassland was exposed to a 200‐µmol mol?1 to 550 µmol mol?1 CO2 gradient from March to mid‐December in 1998 and 1999 using two, 60‐m long, polyethylene‐ covered chambers built directly onto the site. One chamber was operated at subambient CO2 concentrations (200–360 µmol mol?1 daytime) and the other was regulated at superambient concentrations (360–550 µmol mol?1). Continuous CO2 gradients were maintained in each chamber by photosynthesis during the day and respiration at night. Net ecosystem CO2 flux and end‐of‐year biomass were measured in each of 10, 5‐m long sections in each chamber. Net CO2 fluxes were maximal in late May (c. day 150) in 1998 and in late August in 1999 (c. day 240). In both years, fluxes were near zero and similar in both chambers at the beginning and end of the growing season. Average daily CO2 flux in 1998 was 13 g CO2 m?2 day?1 in the subambient chamber and 20 g CO2 m?2 day?1 in the superambient chamber; comparable averages were 15 and 26 g CO2 m?2 day?1 in 1999. Flux was positively and linearly correlated with end‐of‐year above‐ground biomass but flux was not linearly correlated with CO2 concentration; a finding likely to be explained by inherent differences in vegetation. Because C3 plants were the dominant functional group, we adjusted average daily flux in each section by dividing the flux by the average percentage C3 cover. Adjusted fluxes were better correlated with CO2 concentration, although scatter remained. Our results indicate that after accounting for vegetation differences, CO2 flux increased linearly with CO2 concentration. This trend was more evident at subambient than superambient CO2 concentrations.  相似文献   

11.
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures.  相似文献   

12.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

13.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

14.
Abstract For two species of oak, we determined whether increasing atmospheric CO2 concentration (Ca) would decrease leaf mitochondrial respiration (R) directly, or indirectly owing to their growth in elevated Ca, or both. In particular, we tested whether acclimatory decreases in leaf‐Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current ambient + 350 µmol mol?1) Ca, in open‐top chambers (OTCs). For Q. myrtifolia, an increase in Ca from 360 to 710 µmol mol?1 had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated Ca—the only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N) concentration for the sun and shade leaves of both the species of oak. Acclimation of photosynthesis in elevated Ca significantly reduced maximum RuBP‐saturated carboxylation capacity (Vc max) for both the sun and shade leaves of only Q. geminata. However, we estimated that only 11–12% of total leaf N was invested in Rubisco; consequently, acclimation in this plant resulted in a small effect on N and an insignificant effect on R. In this study measurements of respiration and photosynthesis were made on material removed from the field; this procedure had no effect on gas exchange properties. The findings of this study were applicable to R expressed either per unit leaf area or unit dry weight, and did not support the hypothesis that elevated Ca decreases R directly, or indirectly owing to acclimatory decreases in Rubisco content.  相似文献   

15.
We have investigated carbon isotopic compositions of four plant genus/species, Bothriochloa ischaemum (C4), Stipa bungeana (C3), Lespedeza sp. (C3) and Heteropappus less (C3), along a precipitation gradient in northwest China in order to assess the impact of water availability on the carbon isotopic discrimination against 13C during carbon assimilation in this area. This information is necessary for reconstruction of paleovegetation, particularly paleo‐C3/C4 plant ratios using δ13C value of organic matter in loess and paleosols in the Chinese Loess Plateau. The δ13C of C3 plants, as a group, exhibits a negative correlation with the annual precipitation amount with a total change and sensitivity of 5‰ and ?1.1‰/100 mm, respectively, for the precipitation range from 200 to 700 mm. The C4 grass, B. ischaemum responds to aridity by decreasing 1.7‰ for over the precipitation range from 350 to 700 mm; the plant δ13C is significantly correlated with annual precipitation with a slope ?0.61‰/100 mm. This result implies that without considering the effect of water availability on the plant δ13C values, reconstruction of percent C4 vegetation during the last glaciation can be overestimated by about a factor of two.  相似文献   

16.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

17.
Because photosynthetic rates in C4 plants are the same at normal levels of O2 (c, 20 kPa) and at c, 2 kPa O2 (a conventional test for evaluating photorespiration in C3 plants) it has been thought that C4 photosynthesis is O2 insensitive. However, we have found a dual effect of O2 on the net rate of CO2 assimilation among species representing all three C4 subtypes from both monocots and dicots. The optimum O2 partial pressure for C4 photosynthesis at 30 °C, atmospheric CO2 level, and half full sunlight (1000 μmol quanta m?2 s?1) was about 5–10 kPa. Photosynthesis was inhibited by O2 below or above the optimum partial pressure. Decreasing CO2 levels from ambient levels (32.6 Pa) to 9.3 Pa caused a substantial increase in the degree of inhibition of photosynthesis by supra-optimum levels of O2 and a large decrease in the ratio of quantum yield of CO2 fixation/quantum yield of photosystem II (PSII) measured by chlorophyll a fluorescence. Photosystem II activity, measured from chlorophyll a fluorescence analysis, was not inhibited at levels of O2 that were above the optimum for CO2 assimilation, which is consistent with a compensating, alternative electron How as net CO2 assimilation is inhibited. At suboptimum levels of O2, however, the inhibition of photosynthesis was paralleled by an inhibition of PSII quantum yield, increased state of reduction of quinone A, and decreased efficiency of open PSII centres. These results with different C4 types suggest that inhibition of net CO2 assimilation with increasing O2 partial pressure above the optimum is associated with photorespiration, and that inhibition below the optimum O2 may be caused by a reduced supply of ATP to the C4 cycle as a result of inhibition of its production photochemically.  相似文献   

18.
Evidence is presented contrary to the suggestion that C4 plants grow larger at elevated CO2 because the C4 pathway of young C4 leaves has C3-like characteristics, making their photosynthesis O2 sensitive and responsive to high CO2. We combined PAM fluorescence with gas exchange measurements to examine the O2 dependence of photosynthesis in young and mature leaves of Panicum antidotale (C4, NADP-ME) and P. coloratum (C4, NAD-ME), at an intercellular CO2 concentration of 5 Pa. P. laxum (C3) was used for comparison. The young C4 leaves had CO2 and light response curves typical of C4 photosynthesis. When the O2 concentration was gradually increased between 2 and 40%, CO2 assimilation rates (A) of both mature and young C4 leaves were little affected, while the ratio of the quantum yield of photosystem II to that of CO2 assimilation (ΦPSII/ΦCO2) increased more in young (up to 31%) than mature (up to 10%) C4 leaves. A of C3 leaves decreased by 1·3 and ΦPSII/ΦCO2 increased by 9-fold, over the same range of O2 concentrations. Larger increases in electron transport requirements in young, relative to mature, C4 leaves at low CO2 are indicative of greater O2 sensitivity of photorespiration. Photosynthesis modelling showed that young C4 leaves have lower bundle sheath CO2 concentration, brought about by higher bundle sheath conductance relative to the activity of the C4 and C3 cycles and/or lower ratio of activities of the C4 to C3 cycles.  相似文献   

19.
An experiment was carried out to determine the effects of elevated CO2, elevated temperatures, and altered water regimes in native shortgrass steppe. Intact soil cores dominated by Bouteloua gracilis, a C4 perennial grass, or Pascopyrum smithii, a C3 perennial grass, were placed in growth chambers with 350 or 700 μL L?1 atmospheric CO2, and under either normal or elevated temperatures. The normal regime mimicked field patterns of diurnal and seasonal temperatures, and the high-temperature regime was 4 °C warmer. Water was supplied at three different levels in a seasonal pattern similar to that observed in the field. Total biomass after two growing seasons was 19% greater under elevated CO2, with no significant difference between the C3 and C4 grass. The effect of elevated CO2 on biomass was greatest at the intermediate water level. The positive effect of elevated CO2 on shoot biomass was greater at normal temperatures in B. gracilis, and greater at elevated temperatures in P. smithii. Neither root-to-shoot ratio nor production of seed heads was affected by elevated CO2. Plant tissue N and soil inorganic N concentrations were lower under elevated Co2, but no more so in the C3 than the C4 plant. Elevated CO2 appeared to increase plant N limitation, but there was no strong evidence for an increase in N limitation or a decrease in the size of the CO2 effect from the first to the second growing season. Autumn samples of large roots plus crowns, the perennial organs, had 11% greater total N under elevated CO2, in spite of greater N limitation.  相似文献   

20.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号