首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment trap samples collected over a seven-year period (February 1991–October 1997) from Guaymas Basin in the Gulf of California were used to study the oxygen isotope composition of five species of planktonic foraminifera, Globigerinoides ruber (white), Globigerina bulloides, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globorotalia menardii. The δ18O data were analyzed for temporal and interspecies variability and were compared to local hydrography to evaluate the use of each species in reconstructing past oceanographic applications. The two surface dwelling species, G. ruber and G. bulloides displayed the lowest δ18O values (~ 0.0 to ? 5.0‰), while δ18O values for the thermocline dwelling N. dutertrei, P. obliquiloculata, and G. menardii were higher (~ 0.0 to ? 2.0‰). The δ18O of G. ruber most accurately records measured sea surface temperatures (SSTs) throughout the year. G. bulloides δ18O tracks SSTs during the winter–spring upwelling period but for the remainder of the year records slightly colder, subsurface temperatures. The difference between the δ18O of the surface dwelling species, G. ruber and G. bulloides, and that of the thermocline dwelling species, N. dutertrei, P. obliquiloculata, and G. menardii, was used to estimate the surface to thermocline temperature gradient. During the winter these δ18O differences are small (~ 0.50‰) reflecting a well-mixed water column. These interspecies δ18O differences increase during the summer (~ 1.90‰) in response to the strong thermal stratification that exists at this time of year.  相似文献   

2.
Three megalodontoid bivalves from the Upper Triassic Cassian Formation (N Italy, Dolomites) were sampled for δ13C and δ18O sclerochronology (n = 270). With more than 1000 described invertebrate species, the Cassian Formation has one of the best records of an Early Mesozoic tropical fauna. In addition, the Cassian Formation is one of the very few Triassic occurrences with original aragonite preservation, with all studied shells consisting of pristine aragonite. The presence of aragonite and crossed lamellar as well as fibrous prismatic shell microstructures shown for the first time for Triassic megalodontoids suggests absence or minimal impact of diagenetic alteration. The δ13C values range from 3.6 to 5.8‰ and show a distinct cyclicity in two studied shells whereas a third shell shows no obvious cyclicity. In one bivalve specimen, the cycles are somewhat offset from δ18O cycles and in the other specimen δ18O and δ13C curves are inversely correlated. Seasonal variation in freshwater runoff including nutrient input and subsequent changes in plankton productivity during dry and wet seasons may explain δ13C cyclicity. δ18O values show a pronounced cyclicity within each of the studied shells varying from ? 3.6 to ? 1.4‰. The variations in δ18O suggest a pronounced seasonality in Late Triassic tropical shallow waters of the western Tethys, with inferred seasonal temperature changes ranging from 24 to 32 °C. Influx of fresh water during the rainy seasons (mega-monsoon) or upwelling might also explain part of the variation in δ18O. The presented data suggest that the diverse Cassian fauna lived under conditions characterized by warm sea-surface waters with a pronounced seasonality. Similar conditions are reported for some modern tropical settings.  相似文献   

3.
《Marine Micropaleontology》2007,62(4):196-208
Oxygen and carbon isotopes of foraminifera were analyzed in core PC4, water depth 1366 m, off northern Japan, near the east side of the Tsugaru Strait (130 m depth) between the open northwestern Pacific Ocean and the Japan Sea. At present, the site is at the confluence of the Tsugaru Warm Current which flows eastwards out of the Sea of Japan through the Tsugaru Strait, the subarctic Oyashio Current and the subtropic Kuroshio Current. During the Last Glacial Maximum (LGM), the Oyashio Current penetrated further to the South and outflow from the Japan Sea was restricted by glacio-eustatic sea level lowering.The isotopic values of the planktic foraminifer Neogloboquadrina pachyderma (sinistral) and the benthic foraminifer Uvigerina akitaensis reflect rapid millennial-scale paleoceanographic changes between 34 and 6 ka. Hydrographic changes during deglaciation were related to events at high northern latitudes, but Holocene hydrographic changes were dominated by local effects, such as the development of the outflow of the Tsugaru Warm Current. High values of planktic δ18O during the LGM reflect the southward advance of the Oyashio Current. These values decreased by 0.3‰ from 19.4 to 18.9 ka, then increased by 0.5‰ at 18 ka, with highest values between 17.5 and 15 ka. The δ18O oscillations between 19.4 and 15 ka may reflect millennial-scale warm–cold oscillations during Heinrich event 1. Planktic microfossil data indicate that cold Oyashio waters flowed from the northwestern Pacific into the Japan Sea via the Tsugaru Strait between 17 and 16 ka, consistent with the occurrence of the highest planktic δ18O values in core PC4. Planktic δ18O values rapidly decreased by 0.9‰ at 15 ka, possibly reflecting the effects of both a rapid increase in fresh water flux and rising temperatures in the subarctic North Pacific. During the Younger Dryas, cold event planktic δ18O values increased by 0.5‰, followed by a gradual decrease by 1‰ from the early to middle Holocene, reflecting a gradual increase in eastward outflow via the Tsugaru Strait with sea level rise. Both planktic and benthic foraminiferal δ13C values oscillated between 34 and 10 ka, at relatively large amplitudes (about 0.5‰), then remained relatively stable during the last 10 kyr. Several negative planktic and benthic (∼  0.7‰) δ13C excursions were present in sediment dated between the precipitation of secondary carbonates during episodic methane release possibly associated with methane release from continental margin sediments.  相似文献   

4.
To characterize the ecology and physiology of common late Eocene–early Oligocene White River mammals, we analyzed the carbon and oxygen isotope composition of tooth enamel carbonate for six of the most abundant taxa: the perissodactyls Brontops (brontothere), Mesohippus (equid) and Subhyracodon (rhino); and the artiodactyls Merycoidodon (oreodont), Leptomeryx (leptomerycid) and Poebrotherium (camelid).δ13C values of middle and rear molars (M2s and M3s) and premolars range from ? 13.1‰ to ? 7.7‰ (V-PDB), consistent with pure C3 diets. In the late Eocene, Mesohippus, Merycoidodon, and Leptomeryx show indistinguishable average δ13C values (~ ? 10‰). In contrast, Brontops and Subhyracodon exhibit lower (? 11.2‰) and higher (? 8.7‰) values, respectively. Early Oligocene values for Mesohippus and Merycoidodon remain indistinguishable from each other and lower than the value of Leptomeryx, Poebrotherium, and Subhyracodon (~ ? 8.5‰). These results likely indicate niche separation in terms of habitat preference between the investigated sympatric taxa. More specifically, assuming a δ13C value of atmospheric CO2 of ? 5.5‰, our data suggest a preference of Brontops for mesic forested areas, of Mesohippus and Merycoidodon for woodlands, and of Subhyracodon and Poebrotherium for more open habitats (e.g., grasslands). The higher Oligocene versus Eocene average δ13C exhibited by Leptomeryx possibly reflects a preference of the new Oligocene species L. evansi for more open and/or xeric habitats relative to the Eocene species L. speciosus.Late Eocene and early Oligocene average δ18O of Mesohippus, Merycoidodon, Leptomeryx, and Subhyracodon are similar (~ 25‰, V-SMOW), possibly indicating comparable water dependency for these taxa. In contrast, the higher δ18O of Poebrotherium (26.6‰) suggests lower water dependency whereas the lower δ18O of Brontops (23.0‰) may result from a high water dependency or, more likely, from its preference for humid habitats. Because hind-gut fermentation in perissodactyls requires high water intake, whereas fore-gut fermentation does not, our results might indicate the presence of fore-gut fermentation in early Oligocene camelids but its absence or incomplete development in late Eocene–early Oligocene oreodonts and leptomerycids.  相似文献   

5.
The extensive vertical exposure (> 150 m) of terrestrial sediments on Axel Heiberg Island, which contain thick fossiliferous lignites, presents an exceptional opportunity to follow the establishment and re-establishment of Arctic Metasequoia forests during the middle Eocene. We compared δD values in n-alkanes of chain length 23, 25, 27 and 29 with δ18O values in phenylglucosazone (P-G) derived from α-cellulose; we also analyzed %-abundance of ferns, gymnosperms and angiosperms using pollen and spores isolated from each lignite. Our results showed that forest composition was altered upon uplift, as gymnosperms became more abundant within the relatively well-drained upland sediments. This was also reflected in the small (1‰), but significant, increase in the δ13C value of TOM from lowland to upland environments. However, neither the δD values of n-alkanes nor the δ18O in P-G were statistically different in the upland sediments, as compared to the lowland sediments; from this we inferred that the oxygen isotope signature of environmental water available to the forests for plant growth was relatively uniform throughout the time of the fossil forests. The δD value of environmental water implied by both n-alkanes and P-G ranged from ? 168 to ? 131% and was considerably enriched compared to all environmental water samples available from the modern Arctic region (< ? 180%). In addition to indicating a warmer Eocene Arctic, subject to meteoric transport patterns different from today's, these results argue against the presence of an Eocene polar ice cap.  相似文献   

6.
We combine cyclo- and sequence stratigraphy along with whole rock δ13C and conodont apatite δ18O analysis to document high-frequency (104–105 yr) and My-scale sea-level changes for the Middle Pennsylvanian (Desmoinesian or Moscovian) Gray Mesa Formation of central New Mexico. Approximately 75 subtidal cycles (1–8 m) are grouped into 4 1/2 My-scale depositional sequences (40–80 m). About 50% of the cycles show evidence of prolonged subaerial exposure at cycle tops with the development of calcretes, diagenetic mottling, and regolith intraclasts. High-resolution δ13C analysis of whole rock limestones across nine of the cycles indicates that the cycle tops were diagenetically altered by isotopically light, meteoric fluids during sea-level fall and lowstand. These δ13C trends support the interpretation that high-frequency sea-level changes were responsible for cycle development.Conodont apatite δ18O values from sampled cycles indicate that the high-frequency sea-level changes were driven by glacio-eustasy combined with changes in surface seawater temperature (SST). δ18O values from conodont apatite, spanning parts of three depositional sequences indicate that My-scale glacio-eustasy and/or SST changes controlled sequence development. δ18O shifts indicate that the magnitudes of 104–105 yr glacio-eustasy were between ~ 55 and 170+ m combined with tropical SST changes of ~ 1.5°–6 °C. Calculated My-scale glacio-eustatic oscillations were between ~ 60 and 140 m with SST changes of < 3.5 °C. The most plausible driver for the My-scale paleoclimate changes is long-period obliquity (~ 1.2 My) variations. These calculated high-frequency, glacio-eustatic values are similar or greater than Pleistocene values, and lie within the range estimated for other Middle Pennsylvanian successions using a variety of independent eustatic proxies. The similarity in range of magnitudes between high-frequency and My-scale sea-level changes combined with the large differences in magnitudes between individual high-frequency sea-level oscillations helps explain the lack of systematic cycle-stacking patterns within these Pennsylvanian icehouse sequences.  相似文献   

7.
Planktic and epibenthic foraminiferal δ13C records at Site PS62/015-3 (southwestern Greenland Sea) reveal a series of transient events of extreme 13C depletion down to − 6‰ during the period 90–40 ka. Scanning electron microscope studies of the ultrastructures of foraminiferal tests suggest that 13C depleted specimens are affected by some 10–20% overgrowth by authigenic calcite contributing to the light δ13C signal. Incremental-leaching experiments and census counts of pristine versus overgrowth-affected specimens show that the 13C depleted foraminiferal tests incorporate a primary δ13C signature most likely ranging from + 1‰ to − 1.7‰ and a post-depositional δ13C signature around − 17‰ to − 19.5‰. Extremely low values of productivity and organic carbon in Late Quaternary sediments along the east Greenland margin preclude organic matter as potential source of the isotopically light carbon. In contrast, thermal instability of clathrates and subsequent aerobic oxidation of (highly 12C enriched) methane in pore and ocean water provide a compelling mechanism to account for the negative δ13C excursions of both primary and post-depositional carbonates. Here, pore water methane may have led to a supersaturation of 13C depleted bicarbonate and precipitation of isotopically light authigenic calcite on and in foraminiferal tests, a feature that may serve as a tracer to former sites of clathrate destabilization.  相似文献   

8.
Paleoceanographic variability at southern high latitude Ocean Drilling Program (ODP) Site 747 was investigated in this study through the interval which spans the Middle Miocene Climate Transition (MMCT). Between 15.0 and 12.2 million years ago (Ma), foraminiferal δ18O records derived from both benthic (Cibicidoides spp.) and planktonic taxa (Globorotalia praescitula and Globigerina bulloides) reveal a history of changes in water column thermal and salinity structure and a strong imprint of seasonality. Prior to the MMCT, in the interval between 14.35 and 13.9 Ma, G. bulloides displays relatively high δ18O values similar to those of G. praescitula, interpreted to indicate weakening of the thermocline and/or increased seasonality with cooler early-spring and/or late-fall temperatures. Following this interval, G. bulloides δ18O values diverge significantly from benthic and G. praescitula values, with G. bulloides values remaining relatively low for at least 600 kyr following the benthic foraminiferal δ18O shift during the MMCT at ~ 13.9 Ma. This divergence in δ18O records occurs in direct association with the Mi3 cooling and glaciation event and may suggest: (1) a strengthening of the vertical temperature gradient, with greater cooling of deep waters than surface waters, (2) changes in the depth habitat of G. bulloides, (3) changes in the dominant season of G. bulloides calcification, (4) modification of surface-water δ18O values in association with enhanced sea-ice formation, (5) increased surface-water carbonate ion concentration, and/or (6) a significant decrease in surface-water salinity across the MMCT. The first of these possible scenarios is not likely, particularly in light of recent Mg/Ca evidence for significant surface-water cooling in the Southern Ocean associated with the MMCT. Of the remaining possibilities, we favor a change in surface salinity to explain the observed trends in δ18O values and hypothesize that surface salinity may have decreased by up to 2 salinity units at ~ 13.9 Ma. In this scenario, the development of a lower-salinity Antarctic surface layer coincided with regional cooling of both surface and deep waters of the Southern Ocean during the Mi3 glaciation of East Antarctica, and contributed into the dominance of Neogloboquadrina spp. between 13.8 and 13.2 Ma. Additionally, the distinct patterns observed in planktonic foraminiferal δ18O records spanning the MMCT correspond with changes in the vertical δ13C gradient between planktonic and benthic foraminiferal records and major changes in planktonic foraminiferal assemblages at Site 747, providing further evidence of the environmental significance of this climatic transition.  相似文献   

9.
The 13C/12C ratios of leaves of the conifer morphotype Frenelopsis were measured to decipher the influences of water and salt stress on stomatal density (SD), epidermal cell density (ECD) and stomatal index (SI). Three morphospecies were analyzed: F. ugnaensis from freshwater fluvio-lacustrine deposits (Upper Barremian), F. turolensis and alata from coastal deposits (Lower-Middle Albian and Upper Albian respectively). The cuticle δ13C values show a large variation from ? 28‰ to ? 21‰. Comparison with previously published marine carbonate δ13C records indicate that the difference in cuticle δ13C between the different deposits are mainly due to difference in CO2-plant isotope fractionation rather than to change in isotopic composition of inorganic carbon in the atmosphere and ocean. The less negative δ13C and wide range in δ13C of F. turolensis and alata (? 27.5 to ? 21‰), compared to F. ugnaensis, (? 28 to ? 25‰) are interpreted as a result of salt and/or water stress. The data as a whole yield a good relationship between the 13C/12C ratio and SD (r = 0.67, n = 42, p < 0.001), SI (r = 0.53, n = 41, p < 0.001), hence suggesting that the differences in SD and SI between the three morphospecies are related to freshwater/saline environment. Looking at single morphospecies, the SD of F. ugnaensis decreases with increasing δ13C value (r = ? 0.57, n = 15, p = 0.026) as well as a decrease of SI (r = ? 0.62, n = 15, p = 0.013), possibly reflecting warmer and drier conditions. Average SI of F. alata does not significantly change with δ13C and inferred soil salinity in contrast to SD (p < 0.01).  相似文献   

10.
Stable isotopes (δ15N and δ13C) are being widely applied in ecological research but there has been a call for ecologists to determine species- and tissue-specific diet discrimination factors (?13C and ?15N) for their study animals. For large sharks stable isotopes may provide an important tool to elucidate aspects of their ecological roles in marine systems, but laboratory based controlled feeding experiments are impractical. By utilizing commercial aquaria, we estimated ?15N and ?13C of muscle, liver, vertebral cartilage and a number of organs of three large sand tiger (Carcharias taurus) and one large lemon shark (Negaprion brevirostris) under a controlled feeding regime. For all sharks mean ± SD for ?15N and ?13C in lipid extracted muscle using lipid extracted prey data were 2.29‰ ± 0.22 and 0.90‰ ± 0.33, respectively. The use of non-lipid extracted muscle and prey resulted in very similar ?15N and ?13C values but mixing of lipid and non-lipid extracted data produced variable estimates. Values of ?15N and ?13C in lipid extracted liver and prey were 1.50‰ ± 0.54 and 0.22‰ ± 1.18, respectively. Non-lipid extracted diet discrimination factors in liver were highly influenced by lipid content and studies that examine stable isotopes in shark liver, and likely any high lipid tissue, should strive to remove lipid effects through standardising C:N ratios, prior to isotope analysis. Mean vertebral cartilage ?15N and ?13C values were 1.45‰ ± 0.61 and 3.75‰ ± 0.44, respectively. Organ ?15N and ?13C values were more variable among individual sharks but heart tissue was consistently enriched by ~ 1–2.5‰. Minimal variability in muscle and liver δ15N and δ13C sampled at different intervals along the length of individual sharks and between liver lobes suggests that stable isotope values are consistent within tissues of individual animals. To our knowledge, these are the first reported diet–tissue discrimination factors for large sharks under semi-controlled conditions, and are lower than those reported for teleost fish.  相似文献   

11.
A globally recorded negative carbon isotope excursion characterizes the transition from Cambrian Series 2 to Cambrian Series 3. This transition is also well exposed in sedimentary successions on the Yangtze Platform, and the Wuliu–Zengjiayan section, Guizhou Province, South China has been proposed as a potential Global Stratotype Section and Point (GSSP) for this boundary. Here, we report δ13Ccarb values for the Jianshan and the Wuliu–Zengjiayan sections. Both sections display a progressive decrease in δ13C from values around + 3‰ upwards in stratigraphy to a pronounced δ13C minimum with values as low as ? 6.9‰ at the proposed boundary level, and a return to δ13C values between 0 and + 1‰ in the upper part of the sections. The δ13C minimum is thought to be caused by a transgressive event, flooding the shelf area with 13C depleted basinal anoxic bottom water. Our δ13C data are in good agreement with carbon isotope profiles recorded elsewhere. These define the so called ROECE event (Redlichiid–Oleneliid Extinction Carbon Isotope Excursion, cf. Zhu et al., 2006, 2007) and may reflect the perturbation of the global carbon cycle during the Cambrian Series 2 to Cambrian Series 3 transition.  相似文献   

12.
《Palaeoworld》2020,29(3):636-647
Planktonic foraminifera collected from a sediment trap deployed off Hainan in the northwestern South China Sea (SCS-NW) between July 2012 and April 2013 were studied to evaluate their seasonal variability and ecology as well as to infer the factors controlling their shell fluxes. The total planktonic foraminifera flux, as well as the fluxes of the dominant species (Globigerinoides ruber, Globigerinoides sacculifer and Neogloboquadrina dutertrei), showed three distinct maxima during SW-monsoon in August 2012, the SW-NE intermonsoon in October 2012 and the NE-monsoon in December 2012–February 2013. These periods were characterized by upwelling, aerosol fallout, and intense wind mixing, respectively, from which the foraminiferal assemblages benefitted, as indicated by the close correlation between wind speed, sea surface temperature (SST), chlorophyll a concentration (Chl-a), δ18O of G. ruber and the shell fluxes. The correlation also suggests that temperature and food availability might have been the primary drivers of the observed changes in foraminiferal abundance. The offset between the SST deduced from flux-weighted of G. ruber δ18O and annual mean SST is only ∼0.3 °C, much lower than ∼5.2 °C between the summer and winter temperature, indicating a balanced seasonality bias in the shell flux. The linear regression between the satellite-derived sea surface temperature and G. ruber δ18O reveals the strong potential of this species, at least in the studied region, as an ecological indicator for past oceanic environments.  相似文献   

13.
Minor and trace elements in foraminiferal carbonates are potential paleo-proxies of climate, nutrient and seawater composition. There are very few reports of trace element composition of symbiont-bearing, larger foraminifera that are known to be important constituents of shallow-marine, modern and ancient carbonates. In this paper we examine the range of variation in Mg and Sr content of Recent species of these foraminifera from a lagoon of Lakshadweep Atoll (Indian Ocean) and Akajima Islands, Japan. Two hyaline species, Amphistegina lessonii and Neorotalia calcar,and two porcellaneous species, Amphisorus hemprichii and Marginopora vertebralis were collected live from Lakshadweep islands. Mg / Ca in these foraminifera is of an order of magnitude higher than the values reported for planktonic and symbiont-free benthic foraminifera. The Sr / Ca values are, however, comparable with the reported values in other foraminiferal taxa and they are found to vary within a narrow range. Electron-probe micro-analysis of three symbiont-bearing benthic species indicates spatial heterogeneity of high orders in Mg / Ca composition in all the species. The annual variation in temperature and pH of the lagoon water cannot explain the observed amplitude of the compositional variation. The photosynthesis and respiration of the symbionts and host foraminifera are possibly the major cause of compositional heterogeneity in individual tests, as has also been recently postulated for symbiont-bearing planktonic foraminiferal species. It highlights the need to isolate biological factors and necessitates species-specific paleotemperature scale in paleoclimatic analysis. We also analyzed δ18O, δ13C, Ca, Mg and Sr in carefully dissected chambers of a reef-dwelling, porcellaneous benthic foraminifer, Marginopora kudakajimaensis, collected live in four seasons. A moderate positive correlation is observed between Mg / Ca and temperature. However, large inter- and intra-test variation in Mg limits the precision of Mg / Ca as palaeotemperature proxy. The Sr / Ca of the test calcite is unrelated to temperature of the sea water. The δ13C of M. kudakajimaensis does not correlate with δ18O, Mg / Ca or Sr / Ca.  相似文献   

14.
Estrogens were prohibited in the food producing animals by European Union (96/22/EC directive) and added to the Report on Carcinogens in United States since 2002. Due to very low concentration in serum or urine (~pg/mL), the method of control its abuse had not been fully developed.The endogenous estrogens were separated from urines of 18 adult men and women. The exogenous estrogens were chemical reference standards and over the counter preparations. Two patients of dysfunctional uterine bleeding (DUB) administered exogenous estradiol and the urines were collected for 72 h. The urinary estrogens were separated by high-performance liquid chromatography (HPLC) and confirmed. The exogenous and exogenous estrogens were analyzed by gas chromatography combustion isotope ratio mass spectrometry (GC–C–IRMS) to determine the 13C/12C ratio (δ13C‰).The δ13C‰ values of reference standard of E1, E2, and E3 were ?29.36 ± 0.72, ?27.98 ± 0.35, ?27.62 ± 0.51, respectively. The δ13C‰ values of the endogenous E1, E2, and E3 were ?21.62 ± 1.07, ?22.14 ± 0.98, and ?21.88 ± 1.16, with P < 0.01 (t-test). Two DUB patients’ urinary estradiol δ13C‰ values was depleted to ?28.02 ± 0.33 after the administration. The progesterone, 17α-hydroxyprogesterone, pregnanediol, as well as desogestrel and ethinylestradiol from contraceptives were also determined.Stable carbon isotope analysis can distinguish the endogenous and exogenous urinary estrogen in human.  相似文献   

15.
Some coral species of the genus Porites can produce thick mucous sheets that partially or completely envelope the colony’s surface. This phenomenon has been reported many times, but the cause and ecological significance remains unclear. In this study, sheet production was examined in response to elevated suspended sediment concentrations associated with a large-scale, extended dredging project on a coral reef. Approximately 400 corals at 16 locations situated from 0.2–33 km from the excavation area were examined at fortnightly intervals over the 1.5 year dredging campaign. Mucous sheets were observed on 447 occasions (from 10,600 observations), with average mucous prevalence ranging from 0–10%. Overall 74 ± 5% of the colonies <1.5 km from the dredging produced one or more sheets. High levels of mucous coverage (≥95% of the colony surface) was observed on 68 occasions, and 82% of these occurred at sites close to the dredging. Approximately 50% of colonies produced ≥3 sheets over the monitoring period, and 90% of these were located close to the dredging. In contrast, at distantly located reference sites (>20 km away), mean mucous sheet prevalence was very low (0.2% ± 0.1), no colonies produced more than 1 sheet, and only 1 colony was observed with high mucous coverage. In a laboratory-based experiment, explants of Porites spp. exposed to fine silt also produced mucous sheets (105 sheets recorded in 1100 observations), with nearly 30% of the fragments exposed to repeated sediment deposition events of 10 and 20 mg cm−2 d−1 producing 2 new sheets over the 28 day exposure period. These multiple lines of evidence suggest a close association between mucous sheet formation and sediment load, and that sheet formation and sloughing are an additional mechanism used by massive Porites spp. to clear their surfaces when sediment loads become too high. These results suggest that mucous sheet formation is an effective bioindicator of sediment exposure.  相似文献   

16.
《Marine Micropaleontology》2011,80(3-4):67-79
The last 220 ka of the MD03-2705 (18° 05.81′ N–21° 09.19′ W) sedimentary sequence, retrieved off the Cape Verde islands, was investigated using a multiproxy approach. Planktonic foraminifera assemblage analyses, coupled with isotopic measurements (δ18O) from benthic (Planulina wuellerstorfi) and planktonic (Globigerinoides ruber) foraminifera monospecific samples were conducted along the topmost 11 m of the sequence. High resolution X-ray fluorescence measurements (0.5 cm resolution), giving access to major element ratio, have completed the geochemical analyses along the core. Seasonal and annual past sea surface temperatures (SST) were quantitatively reconstructed. Local sea-surface salinity (SSS) changes were then estimated by coupling SST with planktonic δ18O data. Our data provide a set of both oceanic and continental markers of environmental changes along the north-western African margin. The major changes detected in our record are discussed in the light of the regional paleoceanographic and paleoclimatic history of the last 220 ka. Coupled oceanographic and atmospheric processes portray the climatic evolution of the area, and show strong links among the regional oceanography (water mass advection), the upwelling dynamics and the Intertropical Convergence Zone (ITCZ) migration. An increased upwelling activity (or influence of upwelling filaments) is noted at the end of the two last glacial periods, probably in response to a more southerly position of the ITCZ. Higher SSS are recorded over the area during arid intervals and were tentatively interpreted as signing a southward shift of the Cape Verde Frontal Zone. A detailed coupling between dust advection and SSS values over the site of study was noted during MIS6.5.  相似文献   

17.
Using the modern analog methodology applied to planktonic foraminifers, we analyze the relation between the frequency of the coiling type in Neogloboquadrina populations and the sea-surface temperatures (SST) during the middle Pleistocene and the Pleistocene-Pliocene transition in the Alboran Sea (westernmost Mediterranean), close to the Atlantic connection. The results reveal that the present-day positive correlation between the two variables (r = 0.649) is maintained even with a higher coefficient (r = 0.783) in the middle Pleistocene but falls slightly (r = 0.517) in the Pleistocene-Pliocene transition due mainly to a dispersal of the temperatures for the samples bearing predominantly left-coiling Neogloboquadrina. The temperature used as a reference for the coiling change resulted 5-6 °C above its North Atlantic present-day reciprocal, but these thermal differences could be caused by: i) a slight overestimate (1–2 °C) due to the lumping of all neogloboquadrinids into a single variable when SST are estimated; ii) only the warmer range of temperatures for the left-coiling populations would be represented in the samples; and iii) a remarkable warming inside the westernmost Mediterranean during the summer stage mixing cold and warm assemblages in bottom sediments. In addition, these results in combination with those derived from the isotopic analyses (δ18O) in G. bulloides tests, suggest that during the Pliocene-Pleistocene transition two different populations of left-coiling Neogloboquadrina could have existed with different environmental requirements: one, derived from late Miocene-Pliocene (i.e., left-coiling N. acostaensis group), and another being the ancestor of the modern N. pachyderma (left-coiling). Similarity analyses were achieved in order to locate the position of the core-tops with the assemblages most analogous to those of the fossil samples containing left-coiling Neogloboquadrina. The results reinforce the idea that the presence of these forms in the Mediterranean during the intervals studied would be related mainly to the input of cold waters from the North Atlantic during glacial stages, although it could be secondarily favored by the establishment of upwelling conditions, as in the present-day North Alboran waters.  相似文献   

18.
《Dendrochronologia》2014,32(1):78-89
A main concern of dendroclimatic reconstruction is to distinguish in the tree ring proxy the influence of the climate variables of interest from other controlling factors. In order to investigate age, site and climate controls on tree ring width and cellulose δ18O, measurements have been performed in nearby groups of young (145 years old) and older (310–405 years old) oak trees in south-western France, covering the period 1860–2010.Within a given site, inter-tree deviations are small, pointing to a common climatic signal. Despite a similar inter-annual variability, the average level of cellulose δ18O in the young tree group is ∼0.8‰ higher than in the old trees. Such offsets might be caused by different soil properties and differences in the fraction of the source water used by trees from different depths. The δ18O of water in the top soil layer is directly related to the current growing season precipitation, while deeper water can have a lower and more constant δ18O. Local cave drip waters at 10 m depth indeed show a constant isotopic composition, which corresponds to pluri-annual mean precipitation.A 2‰ increasing trend is observed in cellulose δ18O of young trees in the first 30 years of growth, during a period when no trend is visible in older trees. This increase can be quantitatively explained by humidity gradients under the forest canopy, and a changing microclimate around the crown as trees grow higher.While relationships between tree ring width and climate appear complex, the isotopic composition of cellulose is strongly correlated with summer maximum temperature, relative humidity and evapotranspiration (r  0.70). Weaker correlations (r  0.40) are identified with precipitation δ18O from a 15-year long local record and from the REMOiso model output. These results imply that leaf water enrichment has a stronger control on the inter-annual variability of cellulose δ18O than the δ18O of precipitation.This study demonstrates the suitability of oak tree ring cellulose δ18O for reconstructing past summer climate variability in south-western France, provided that the sampling and pooling strategy accounts for the fact that trees from different sites and of different age can introduce non-climatic signals.  相似文献   

19.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

20.
《Aquatic Botany》2008,88(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号