首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The latest publications on Sarcocornia taxonomy and phylogeny recognize six taxa in this genus on the Iberian Peninsula: S. perennis, S. fruticosa, S. alpini, S. alpini subsp. carinata, S. hispanica, and S. pruinosa. The present study represents a comprehensive revision of the different taxa in the Sarcocornia genus present in Western Mediterranean Europe by means of morphological, micromorphological and phylogenetic internal transcribed spacer (ITS) analysis. Morphological and micromorphological data were studied from Sarcocornia samples from 113 populations in coastal salt marshes and inland salt pans in Portugal, France, Spain and Italy. Sixteen new ITS sequences were obtained from Mediterranean Sarcocornia species and analysed together with previous reported data. Published karyological, ecological and biogeographical data from Western Mediterranean Europe were also reviewed. The results indicate the presence of a new species, S. lagascae, found growing in coastal Mediterranean areas of the Iberian Peninsula. The species S. fruticosa was found to be absent from the Iberian territories.  相似文献   

2.
Aim The circum‐Mediterranean region is one of the most complex regions of the Earth in terms of geography and natural history. The Old World species of the beetle subtribe Anisopliina (Scarabaeidae) feed almost exclusively on the pollen of grasses (Poaceae). Within this group, the ‘anisopliine clade’ forms a monophyletic group distributed mainly in the circum‐Mediterranean region. Here, we reconstruct the biogeographical history of the anisopliine beetles in relation to the diversification of grasses, and compare this reconstruction with previous hypotheses concerning the evolution of the Mediterranean fauna and with palaeogeographical accounts of the history of this region. Location The Mediterranean region, including North Africa, the Western Mediterranean, Balkans–Anatolia, Middle East and Caucasus. Methods Dispersal–vicariance analysis (diva ) was used to reconstruct ancestral distributions based on the morphological phylogeny and to infer the biogeographical processes that have shaped the observed distribution patterns. To account for phylogenetic uncertainty in the biogeographical reconstruction, we ran alternative ancestral distributions derived by diva over a sample of trees obtained by bootstrapping the original data set, reflecting the relative confidence of the ancestral areas on the various clades in the phylogeny. Results The Eastern Mediterranean region and the Caucasus are inferred as the ancestral area of most of the anisopliine lineages. The Eastern Mediterranean region is also reconstructed as the source area of the majority of dispersal events, in particular towards North Africa and the Western Mediterranean. The Iberian Peninsula is inferred as part of the ancestral distribution of the anisopliine clade but also as the setting of several independent colonization events via both the North African platform (Anthoplia) and a European dispersal route (Anisoplia). Main conclusions Our results confirm the role played by the Eastern Mediterranean as an evolutionary cradle of diversity for Mediterranean lineages. This can be explained by a recent and intense orogenic activity that might have promoted isolation and allopatric speciation within lineages. Both the Anomalini fossil record and the close association of anisopliine beetles with grasses suggest that the anisopliine clade originated in the Late Tertiary and that its spatial and temporal evolution within the Mediterranean Basin coincided with that of its major food source, the Mediterranean Poaceae.  相似文献   

3.
Aim The question of how much of the shared geographical distribution of biota is due to environmental vs. historical constraints remains unanswered. The aim of this paper is to disentangle the contribution of historical vs. contemporary factors to the distribution of freshwater fish species. In addition, it illustrates how quantifying the contribution of each type of factor improves the classification of biogeographical provinces. Location Iberian Peninsula, south‐western Europe (c. 581,000 km2). Methods We used the most comprehensive data on native fish distributions for the Iberian Peninsula, compiled from Portuguese and Spanish sources on a 20‐km grid‐cell resolution. Overall, 58 species were analysed after being categorized into three groups according to their ability to disperse through saltwater: (1) species strictly intolerant of saltwater (primary species); (2) species partially tolerant of saltwater, making limited incursions into saltwaters (secondary species); and (3) saltwater‐tolerant species that migrate back and forth from sea to freshwaters or have invaded freshwaters recently (peripheral species). Distance‐based multivariate analyses were used to test the role of historical (basin formation) vs. contemporary environmental (climate) conditions in explaining current patterns of native fish assemblage composition. Cluster analyses were performed to explore species co‐occurrence patterns and redefine biogeographical provinces based on the distributions of fishes. Results River basin boundaries were better at segregating species composition for all species groups than contemporary climate variables. This historical signal was especially evident for primary and secondary freshwater fishes. Eleven biogeographical provinces were delineated. Basins flowing to the Atlantic Ocean north of the Tagus Basin and those flowing to the Mediterranean Sea north of the Mijares Basin were the most dissimilar group. Primary and secondary freshwater species had higher province fidelity than peripheral species. Main conclusions The results support the hypothesis that historical factors exert greater constraints on native freshwater fish assemblages in the Iberian Peninsula than do current environmental factors. After examining patterns of assemblage variation across space, as evidenced by the biogeographical provinces, we discuss the likely dispersal and speciation events that underlie these patterns.  相似文献   

4.
The Italian and Balkan peninsulas have been places traditionally highlighted as Pleistocene glacial refuges. The Iberian Peninsula, however, has been a focus of controversy between geobotanists and palaeobotanists as a result of its exclusion from this category on different occasions. In the current paper, we synthesise geological, molecular, palaeobotanical and geobotanical data that show the importance of the Iberian Peninsula in the Western Mediterranean as a refugium area. The presence of Aesculus aff. hippocastanum L. at the Iberian site at Cal Guardiola (Tarrasa, Barcelona, NE Spain) in the Lower–Middle Pleistocene transition helps to consolidate the remarkable role of the Iberian Peninsula in the survival of tertiary species during the Pleistocene. The palaeodistribution of the genus in Europe highlights a model of area abandonment for a widely-distributed species in the Miocene and Pliocene, leading to a diminished and fragmentary presence in the Pleistocene and Holocene on the southern Mediterranean peninsulas. Aesculus fossils are not uncommon within the series of Tertiary taxa. Many appear in the Pliocene and suffer a radical impoverishment in the Lower–Middle Pleistocene transition. Nonetheless some of these tertiary taxa persisted throughout the Pleistocene and Holocene up to the present in the Iberian Peninsula. Locating these refuge areas on the Peninsula is not an easy task, although areas characterised by a sustained level of humidity must have played an predominant role.  相似文献   

5.
Phylogenetic relationships of 64 freshwater Barbus s.s. species distributed in basins around the Mediterranean Sea were assessed using cytochrome b sequences. Our results are in concordance with previous morphological and genetic studies, which proposed that these species belong to two major lineages (or subgenera): Barbus and Luciobarbus . We were particularly interested in phylogenetic relationships among species of the Luciobarbus lineage that are primarily found in the southern Mediterranean region from the Iberian Peninsula to the Middle East. In the Luciobarbus lineage, species that were previously attributed to the Capoeta genus were clustered. In this study, we observed short internodes between monophyletic groups having a geographical agreement around the Mediterranean. However, groups from the opposite sides of the Mediterranean Sea (Iberian Peninsula– Capoeta , north-western Africa–Middle East) seem to be phylogenetically close. We therefore infer that rapid radiation of Luciobarbus species in the Late Miocene better fits our data rather than gradual founder events in the southern Mediterranean. We propose that the biogeographical event along an east–west route, responsible for the present distribution of Luciobarbus species, was the 'Lago Mare' phase of the Mediterranean Sea that provided a rapid dispersal route over extensive distances. This provides new insights into the speciation pattern of this group, and may be of general use in the study of freshwater species in these regions.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 207–222.  相似文献   

6.
Aim The geological evolution of the Mediterranean region is largely the result of the Tertiary collision of the African and Eurasian Plates, but also a mosaic of migrating island arcs, fragmenting tectonic belts, and extending back‐arc basins. Such complex paleogeography has resulted in a ‘reticulate’ biogeographical history, in which Mediterranean biotas repeatedly fragmented and merged as dispersal barriers appeared and disappeared through time. In this study, dispersal‐vicariance analysis (DIVA) is used to assess the relative role played by dispersal and vicariance in shaping distribution patterns in the beetle subfamily Pachydeminae Reitter, 1902 (Scarabaeoidea), an example of east–west Mediterranean disjunction. Location The Mediterranean region, including North Africa, the western Mediterranean, Balkans–Anatolia, Middle East, Caucasus, the Iranian Plateau, and Central Asia. Methods A phylogenetic hypothesis of the Palearctic genera of Pachydeminae in conjunction with distributional data was analysed using DIVA. This method reconstructs the ancestral distribution in a given phylogeny based on the vicariance model, while allowing dispersal and extinction to occur. Unlike other methods, DIVA does not enforce area relationships to conform to a hierarchical ‘area cladogram’, so it can be used to reconstruct ‘reticulate’ biogeographical scenarios. Results Optimal reconstructions, requiring 23 dispersal events, suggest that the ancestor of Pachydeminae was originally present in the south‐east Mediterranean region. Basal splitting within the subfamily was caused by vicariance events related to the late Tertiary collision of the African microplates Apulia and Arabia with Eurasia, and the resultant arise of successive dispersal barriers (e.g. the Red Sea, the Zagros Mountains). Subsequent diversification in Pachydeminae involved multiple speciation events within the Middle East and Iran–Afghanistan regions, which gave rise to the least speciose genera of Pachydeminae (e.g. Otoclinius Brenske, 1896). Finally, the presence of Pachydeminae in the western Mediterranean region seems to be the result of a recent dispersal event. The ancestor of the Iberian genera Ceramida Baraud, 1987 and Elaphocera Gené, 1836 probably dispersed from the Middle East to the Iberian Peninsula across North Africa and the Gibraltar Strait during the ‘Messinian salinity crisis’ at the end of the Miocene. Main conclusions Although the basal diversification of Pachydeminae around the Mediterranean appears to be related to vicariance events linked to the geological formation of the Mediterranean Basin, dispersal has also played a very important role. Nearly 38% of the speciation events in the phylogeny resulted from dispersal to a new area followed by allopatric speciation between lineages. Relationships between western and eastern Mediterranean disjuncts are usually explained by dispersal through Central Europe. The biogeographical history of the Pachydeminae corroborates other biogeographical studies that consider North Africa to be an alternative dispersal route by which Mediterranean taxa could have achieved circum‐Mediterranean distributions.  相似文献   

7.
We estimated the phylogenetic relationships of all Ibero-African spined loaches of the genus Cobitis using the complete mitochondrial cytochrome b gene (1140bp). We analysed 93 individuals of seven cobitid species found in all the principal drainages of the Iberian Peninsula and North Africa. A molecular phylogeny was used to revise current systematics of the Ibero-African Cobitis species and to infer a biogeographical model for Cobitis in the Western Mediterranean area during the Cenozoic period. Phylogenetic analysis provided support for the monophyly of two mtDNA clades: Clade A or Italian Clade with the Italian species (C. bilineata, C. zanandreai), and Clade B or the Ibero-African Clade. The Ibero-African Clade included all species endemic for the Iberian Peninsula (C. vettonica, C. calderoni, and C. paludica) and North Africa (C. maroccana). The species C. paludica does not constitute a natural group, and could be divided into at least four monophyletic mtDNA lineages with moderate to high bootstrap values and posterior probability support. Phylogenetic relationships of the Ibero-African species were not resolved satisfactorily, but in all analyses C. calderoni from Northern Iberian Peninsula was basal. We have re-calibrated a molecular clock for the genus Cobitis (0.68% per million year by pairwise) using populations inhabiting both sides of the Gibraltar Strait. Application of this Cobitis mtDNA clock provides evidence that the Messinian salinity crisis played a primary role in the diversification of some Ibero-African cobitid species. The basal polytomies of the Ibero-African Clade might suggest that all mtDNA lineages diversified rapidly.  相似文献   

8.
The genus Pseudamnicola comprises a group of tiny springsnails inhabiting several continental and insular regions of the Mediterranean basin. Given the limited dispersal capabilities of these animals, it is difficult to explain the wide distribution range of the genus and, more specifically, its presence in isolated habitats, such as on islands. Thus, to investigate the process(es) that may explain these distribution patterns, we morphologically re‐described and genetically analysed the six Pseudamnicola (Pseudamnicola) species occurring in the Iberian Peninsula and the nearby Balearic Islands. Genetic relationships were explored by sequencing two mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and one nuclear (28S rRNA) gene in 19 populations. Our morphological study confirmed the presence of previously described species, whereas our phylogenetic results revealed three lineages within the subgenus: one clade grouping the species from Minorca Island with an Iberian Peninsula species, a second clade grouping the three species from Majorca Island, and a third clade that consists of a single species, which occurs in both the Iberian Peninsula and Ibiza Island. Calculated speciation times show that the cladogenetic events involving the insular species seem to have occurred after the current conformation of the Balearic Islands (c. 20 Mya). Therefore, the speciation process may have been related to subsequent transmarine colonizations, probably during the Messinian Salinity Crisis, and the Pleistocene glaciations when landmass corridors connected the islands with the continent. © 2014 The Linnean Society of London  相似文献   

9.
Origins and biogeography of the chub, genus Squalius (formerly within the genus Leuciscus), in the Iberian Peninsula were inferred from comparison between patterns of geographic distribution and phylogenetic relationships among populations belonging to 14 European Squalius species. The phylogeny recovered was based on the complete sequence of the mitochondrial cytochrome b gene. Squalius species were grouped into three major clades. The basal clade included species distributed across the ancient Paratethys Sea. The second clade included species from Central and East Europe and the northern areas of the Mediterranean basin towards Minor Asia. The third clade included species from the Mediterranean Peninsulas (Iberian, Italy, and Balkans). The Iberian Squalius species do not constitutes a monophyletic group. Our data indicate that the Iberian Peninsula was colonized at least twice by two different monophyletic lineages, a meridional group and a Central Europe group. The amount of species diversity found in the Iberian Peninsula and the phylogenetic relationships among these species, together with their geographic distribution, suggest that the Central Europe lineage colonized the Iberian Peninsula at a latter time. Our data indicate that the northeastern Iberian lineage is phylogenetically close to Greek populations of Squalius cephalus, while the second lineage formed a monophyletic group including Squalius pyrenaicus, Squalius carolitertii, Squalius aradensis, and Squalius torgalensis. The speciation process that generated these species and the geographic structure of their populations, principally in S. pyrenaicus, can be attributed to paleogeographical events like the ancient endorrheism and the development of hydrographic basins.  相似文献   

10.
Moreira B  Tavsanoglu C  Pausas JG 《Oecologia》2012,168(3):671-677
Intraspecific trait variability has a fundamental contribution to the overall trait variability. However, little is known concerning the relative role of local (e.g. disturbances and species interaction) and regional (biogeographical) processes in generating this intraspecific trait variability. While biogeographical processes enhance plant trait variability between distant populations, in fire-prone ecosystems, recurrent fires may have a preponderant role in generating variability at a local scale. We hypothesize that plants respond to the local spatio-temporal heterogeneity generated by fire by having a relatively large local variability in regeneration traits in such a way that overrides the variability at a broader biogeographical scale. We test this hypothesis by assessing the intraspecific variability in fire-related regeneration traits of two species (Cistus salviifolius and Lavandula stoechas) growing in fire-prone ecosystems of the Mediterranean Basin. For each species, we selected six populations in two distant regions, three in the east (Anatolian Peninsula) and three in the west (Iberian Peninsula). For each species and population, we analysed the following regeneration traits: seed size, seed dormancy and stimulated germination by fire-related cues (heat and smoke). To evaluate the distribution of the variability in these traits, we decomposed the variability of trait values at each level, between regions (regional) and between population within region (local), using linear mixed-effect models. Despite the biogeographical and climatic differences between regions, for the two species, intraspecific variability in regeneration traits was higher at a local (within regions) than at a regional scale (between regions). Our results suggest that, in Mediterranean ecosystems, fire is an important source of intraspecific variability in regeneration traits. This supports the prominent role of fire as an ecological and evolutionary process, producing trait variability and shaping biodiversity in fire-prone ecosystems.  相似文献   

11.
《Nordic Journal of Botany》2007,25(3-4):227-237
The orchid flora of the Iberian Peninsula is relatively well known, but its biogeographical and diversity patterns have until now remained unanalysed. This work compares the richness of this flora with that of 27 other territories in different continents and at different latitudes, with the aim of establishing whether it is richer or poorer than might be expected. Latitude was found to be an excellent predictor of regional orchid species richness. With 122 taxa, the orchid flora of the Iberian Peninsula is more or less as diverse as that of other Mediterranean areas of similar latitude (e.g. France, Greece or Italy), but more diverse than other European or indeed North African orchid floras. In this study, the Iberian orchid species were assigned to eight monophyletic clades and the global distribution of these are mapped to establish continental affinities between the floras. A recent floristic account on the Iberian orchids was also used to assign the orchid taxa to habitats, and the relationship between the number of endemisms and their habitats was analysed. The patterns of endemism differed in different habitats. Very high levels of endemism were found in habitats peculiar to the Mediterranean Basin, indicating the relict status of its orchid flora.  相似文献   

12.
The position of the Iberian Peninsula during the Early Cretaceous, sandwiched between Laurasia and Gondwana, makes it an important area for the biogeography study of terrestrial ecosystems. Relevant data are, however, scarce. The discovery of silicified wood in the west of the Cameros Basin, in the village Hacinas (Spain), is the first record of the genus Protopodocarpoxylon in Spain and the seventh of Agathoxylon. A new species, Protopodocarpoxylon haciniensis sp. nov., is described. The anatomy of the samples studied shows that paleoclimatic conditions during the Early Cretaceous in the western part of the Cameros Basin were favorable to tree growth, with good water supply during the growth season. Although much impoverished in comparison with Western Europe, the Iberian Early Cretaceous wood floras are clearly Laurasian in affinity.  相似文献   

13.
Aim To investigate the molecular phylogenetic divergence and historical biogeography of cave crickets belonging to the genus Dolichopoda (Orthoptera, Rhaphidophoridae). Location Caves in continental and insular Greece. Methods We sequenced 1967 bp of mitochondrial DNA, corresponding to three fragments of the small and large subunit of the ribosomal RNA (16S and 12S rRNA, respectively) and to the subunit I of cytochrome oxidase (COI), to reconstruct phylogenetic relationships among all 30 known Greek species of Dolichopoda. Alternative hypotheses about the colonization of the Hellenic Peninsula by Dolichopoda species were tested by comparing the degree of discordance between species trees and gene trees under four plausible biogeographical scenarios. Results The present study revealed a rather well resolved phylogeny at species level, identifying a number of clades that represent long‐separated lineages and diverse evolutionary histories within the genus Dolichopoda. Two main clades were revealed within Hellenic–Aegean species, identifying a north‐western and a south‐eastern species group. Based on Bayesian analysis, we applied a relaxed molecular clock to estimate the divergence times between the lineages. The results revealed that the origins of eastern Mediterranean lineages are much older than those of previously studied western Mediterranean Dolichopoda. Tests of alternative biogeographical hypotheses showed that a double colonization of the Hellenic Peninsula, following separate continental and trans‐Aegean routes during the Messinian stage, best accounts for the present distribution of Greek Dolichopoda species. Main conclusions Reconstruction and biogeographical hypothesis testing indicated that the colonization of Greece by Dolichopoda species comprised two episodes and two different routes. The southern lineage probably arose from a trans‐Aegean colonization during the Messinian salinity crisis (5.96–5.33 Ma). The northern lineage could be the result of dispersal from the north through the Balkan Peninsula. The opening of the Mid‐Aegean Trench could have promoted an initial diversification within the uprising Anatolian Plateau, while the Messinian marine regression offered the conditions for a rapid dispersal through the whole Aegean–Hellenic region. In addition, climatic events during the Plio‐Pleistocene may have been responsible for the speciation within each of the two different phylogeographical units, principally attributable to vicariance events.  相似文献   

14.
We classified the main Iberian river basins based on the presence and absence of freshwater fishes and amphibians. For both taxonomic groups we analysed three data sets; 1) endemic species only, to search for biotic boundaries related to historical events, 2) indigenous species, which include endemic ones, to search for biotic boundaries related to ecological factors, 3) indigenous and well-established introduced species, to assess the influence of man in the current biogeographical patterns of fishes and amphibians. We used both phenetic and cladistic methods, followed by a consensus analysis to provide an overall biogeographical pattern. Based on all fish distributions, the Iberian Peninsula is divided into three biogeographical regions: Cantabrian, Atlantic and Mediterranean, No boundary existed between the Cantabrian and Atlantic regions when only indigenous fish species were considered. This suggests that this boundary has been induced by man, probably through the differential introduction of fish species into reservoirs at one or other side of the boundary. Run-off and the size of the river basins are the environmental factors that distinguished the Atlantic and Mediterranean regions. However, regionalization based only on endemic freshwater fishes showed a latitudinal pattern that agrees with the paleogeographic events of the Upper Oligocene-Lower Miocene period. By contrast, one northern and one southern region were distinguished based on all amphibian distributions and on indigenous amphibians only, which suggests that human activity has not significantly affected the overall biogeographical pattern of amphibians in the Iberian Peninsula. Interannual predictability of precipitation best accounts for this regionalization. Based on endemic amphibians, the Iberian Peninsula is divided into three regions that closely resemble the three separate land areas of the Upper Eocene-Lower Oligocene period. The consensus between the biogeographical regions based on fishes and amphibians yields five pairs of basins. Geological origin of the basins seems to better explain the consensus between the biogeographical patterns of fishes and amphibians, whereas ecological factors probably contribute to the differences between them.  相似文献   

15.
Aim The funnelweb spider Macrothele calpeiana is endemic to the southern half of the Iberian Peninsula, but recent occurrence records from localities in Spain, North Africa and other regions of Europe, which are distant from its native populations, suggest human‐mediated dispersal, probably associated with the commercial export of olive trees. The main goal of this study was to assess the environmental suitability of these new records and to discuss the spider’s potential to become an invasive species, mainly in new regions across Central Europe and the Mediterranean Basin. Location Central Europe, Mediterranean Basin. Methods Using presence points from the Iberian native populations of M. calpeiana and a set of climatic variables, four presence‐only algorithms (BIOCLIM, DOMAIN, GARP and Maxent) were applied to model the potential distribution of the spider. The models were transferred to Central Europe and the Mediterranean Basin, and the locations of the new records in both the occupied and potential environmental spaces were screened. Results The four models were generally congruent in predicting the existence of a suitable climate for the species across the Mediterranean Basin, although BIOCLIM and DOMAIN yielded more constrained predictions than GARP and Maxent. Whereas the new records from Central Europe were located far from the occupied and potential climatic spaces, those from the Iberian Peninsula were not. Main conclusions Climatic suitability together with propagule pressure owing to human activities will certainly enhance the opportunities for M. calpeiana to colonize new areas across the Mediterranean Basin. The species has invaded areas beyond its native range, and those new locations located in the Iberian Peninsula and North Africa show environmental suitability for the spider and deserve long‐term monitoring. Although the new locations in Central Europe were not predicted by the climate models and the persistence of the species seems improbable, the possibility of rapid evolution or phenotypic plasticity processes raises the need for caution over the possibility of a future spread of M. calpeiana across Europe. Stronger controls over the transport of trees must be applied, and further studies on the ecology of the spider are imperative to assess the possible impact on the invaded ecosystems.  相似文献   

16.
Calendula L. (Asteraceae) is a taxonomically and cytologically complex genus due to its high morphological and karyological variation. To gather consistent cytological information aiming to consolidate the existing knowledge, sustain the taxonomic revision of the genus and explore the evolutionary relationships among species, the genome size and chromosome number of the Iberian Peninsula representatives of this genus were assessed. The study included 11 taxa that occur in the Iberian Peninsula, one in Madeira and two from Morocco. Chromosome counts were made using the squash technique in root tips and flower buds, while nuclear DNA contents were assessed using propidium iodide flow cytometry. The following chromosome numbers are reported: 2n = 44 for C. arvensis, 2n = 30 for C. tripterocarpa, and 2n = 32 for the remaining Iberian taxa. The genome size of Calendula species was assessed for the first time and ranged from 1.75 pg/2C in C. maroccana to 5.41 pg/2C in C. arvensis. Within the complex formed by C. incana and C. suffruticosa, a gradient of genome size values was obtained. Intraspecific variation in genome size was detected in some taxa. The obtained genome size values and their variation are discussed in the light of the theories proposed for the speciation of the genus, with events of hybridization, genome duplication and dysploidy being hypothesized to play a major role in the evolution of this genus.  相似文献   

17.
Aim The genus Abies exemplifies plant diversification related to long‐term climatic, geological and evolutionary changes. Today, the Mediterranean firs comprise nine species, one natural hybrid and several varieties. Here I summarize current knowledge concerning the origin and evolution of the genus Abies in the Mediterranean Basin and propose a comprehensive hypothesis to explain the isolation and speciation pattern of Mediterranean firs. Location The Mediterranean Basin. Methods The literature on Abies was reviewed, focusing on the morphology, fossil records, molecular ecology, phytosociology and biogeography of the genus in the Mediterranean Basin. Results Abies fossils from the western Mediterranean indicate a wide Tertiary circum‐Mediterranean distribution of the Abies ancestor. Palaeogeographical data also suggest a single eastern Mediterranean Tertiary ancestor. Following the Miocene to Pliocene climate crisis and marine transgressions, the ancestor of the northern Mediterranean firs is hypothesized to have separated into two eastern groups, one on the Balkan Peninsula and the other in Asia Minor. However, land bridges may have permitted gene flow at times. A southward migration of A. alba to refugia, where older fir species may have remained isolated since the Miocene, could explain recent findings indicating that morphologically distant species are more closely related than expected based on such morphological classification. Main conclusions The Abies genus appears to have undergone significant morphological differentiation that does not necessarily imply reproductive isolation. That is, long‐term Mediterranean Basin dryness along a south‐eastern to north‐western gradient may have caused an initial Miocene–Pliocene speciation sequence. Pleistocene glacial cycles probably forced migrations to occur, leading to repeated contact between fir species in glacial refugia.  相似文献   

18.
The European rabbit (Oryctolagus cuniculus) is a high-profile prey, native from the Iberian Peninsula, the only region in the world where the two rabbit subspecies (O. cuniculus algirus and O. cuniculus cuniculus) currently co-exist in natural conditions. In this area, this important prey represents a keystone species and ecosystem engineer of Mediterranean landscapes, being also the most harvested and one of the most managed small-game species. Additionally, the species can create damage to crops in some parts of the Iberian Peninsula where it is regarded as an agricultural pest. The scientific interest towards the species is becoming increasingly apparent most likely as a repercussion of declining population trends over the last decades. The latter has been the result of the impact of habitat deterioration, viral diseases, unsustainable hunting, and predation. In this paper, I present a review of the scientific literature currently available on the European rabbit in the Iberian Peninsula. I discuss knowledge gaps and highlight priority research guidelines to suppress them, in an attempt to provide a general perspective to target research efforts more effectively. This analysis is particularly relevant due to the current vulnerability of rabbit populations in Iberia and to the recent news of cuts in scientific funding in most Mediterranean countries.  相似文献   

19.
The caprellid Caprella scaura, native to the western Indian Ocean, is one striking example of a successful invader. It was first recorded in the Iberian Peninsula in Gerona (north-eastern coast of Spain), in 2005, and has recently been reported throughout the Mediterranean and Atlantic coasts of this region. The most likely vector of introduction and distribution is within the hull-fouling community on recreational craft. However, beyond the dates of detection, the introduction history of C. scaura remains unclear. Direct sequencing of mitochondrial DNA (cytochrome c oxidase subunit I) was used to compare genetic composition in native and introduced populations in order to infer the invasion history of this species. In addition, 18S rDNA sequences were used to resolve phylogenetic relationships within this species and with the morphologically closest species Caprella californica and Caprella scauroides. The high genetic divergence and population subdivision found between non-native Iberian populations together with a high level of genetic diversity in some populations indicate multiple geographical sources and introduction points for this caprellid. Our data suggest that Iberian populations may derive from at least two sources: (1) Pacific Australian, and (2) Indian Ocean, either directly, or, more likely, through stepping-stone events from central Mediterranean population(s). Atlantic Iberian populations seem to be the most recently established populations. On the other hand, this is the first study providing molecular evidence confirming C. scaura, C. californica and C. scauroides as distinct species. It also provides strong molecular evidence that C. scaura typica and C. scaura scaura correspond to the same subspecies, and the Japanese C. scaura diceros and the Chilean C. scaura spinirostris could merit specific rank.  相似文献   

20.
The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan Peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an “Out-of-Italy” expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian, and Balkan Peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号