首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The wild flowering cherry Prunus lannesiana var. speciosa is highly geographically restricted, being confined to the Izu Islands and neighboring peninsulas in Japan. In an attempt to elucidate how populations of this species have established we investigated the genetic diversity and differentiation in seven populations (sampling 408 individuals in total), using three kinds of genetic markers: chloroplast DNA (cpDNA), amplified fragment length polymorphisms (AFLPs), and 11 nuclear SSR polymorphic loci. Eight haplotypes were identified based on the cpDNA sequence variations, 64 polymorphic fragments were scored for the AFLP markers, and a total of 154 alleles were detected at the 11 nuclear SSR loci. Analysis of molecular variance showed that among-population variation accounted for 16.55, 15.04 and 7.45% of the total detected variation at the cpDNA, AFLPs, and SSR loci, respectively. Thus, variation within populations accounted for most of the genetic variance for all types of markers, although the genetic differentiation among populations was also highly significant. For cpDNA variation, no clear structure was found among the populations, except that of the most distant island, although an “isolation by distance” pattern was found for each marker. Both neighbor-joining trees and structure analysis indicate that the genetic relationships between populations reflect geological variations between the peninsula and the islands and among the islands. Furthermore, hybridization with related species may have affected the genetic structure, and some genetic introgression is likely to have occurred.  相似文献   

2.
Lu HP  Cai YW  Chen XY  Zhang X  Gu YJ  Zhang GF 《Genetica》2006,128(1-3):409-417
Heptacodium miconioides Rehd. is an endangered species endemic to China and has suffered rapid decrease of distribution range and population size. This species has been disappeared in central China where the modal specimen was collected. We analyzed the genetic variation of the remaining populations to reveal whether the genetic diversity also suffered decrease and to provide some suggestions for conservation. All the nine known remaining populations were sampled. Genetic variation was analyzed based on RAPD markers and two fragments of cpDNA sequence, intergenic spacers of petG-trnP and trnS-trnG. No variation was observed in the two fragments of cpDNA sequence. However, the species exhibited high level of RAPD variation compared to other threatened or rare plants. Measures of genetic diversity within populations were strongly related to the log of estimated population size, indicating that large populations usually have more genetic diversity than that of small ones. About 25% of the variation was partitioned among populations. Significant relationship was observed between differentiation and geographical distance, indicating a pattern of isolation-by-distance. Given for few populations remaining, all the populations should be protected and urgent efforts be paid on the small populations to avoid their local extinction.  相似文献   

3.
Berchemiella wilsonii var. pubipetiolata (Rhamnaceae) is an endangered tree in eastern China. Habitat destruction has resulted in fragmentation of remnant populations and extinction of local populations. AFLP and cpDNA markers were used to determine the population structure of remnant populations of B. wilsonii var. pubipetiolata. Moderate nuclear genomic diversity was found within each of the four remnant populations (H S = 0.141–0.172), while the cpDNA haplotype diversity in each population ranged from 0.356 to 0.681. Six haplotypes were identified by a combined cpRFLP and cpSSR analysis in a total of 89 individuals. AMOVA revealed significantly AFLP genetic differentiation within and between regions (ΦSC = 0.196, ΦCT = 0.396, respectively), and a high cpDNA haplotype differentiation between regions (ΦCT = 0.849). The results suggest low gene flow between populations of B. wilsonii var. pubipetiolata. Strong genetic divergence between two regional populations as revealed by both AFLP and cpDNA markers provided convincing evidence that two distinct evolutionary lineages existed, and should be recognized as ‘evolutionary significant units’ (ESUs) for conservation concerns.  相似文献   

4.
Thirty five bands (alleles) from six enzyme systems and fifty seven random amplified polymorphic DNA (RAPD) fragments were selected to analyse the genetic diversity of 33 polyploid wheatgrasses (Triticeae) populations of species Thinopyrum junceiforme and Elytrigia pycnantha, and two hybrids, one pentaploid and one novel 9-ploid. Dice’s similarity coefficient, the UPGMA-derived phenograms from RAPD, and allozymes markers showed that the clustering of wheatgrass populations was based on ploidy level. These markers had similar levels of diversity between populations, with high genetic similarity within the same ploidy-level and within population’s individuals. The tetraploid Th. junceiforme populations are closely related, with a large similarity distances varied from 0.8 to 1. Based on the isozyme and RAPD analyses, diploid taxa are related to polyploids with similarity coefficients 0.4.  相似文献   

5.
Tiarella trifoliata comprises varietieslaciniata, trifoliata, andunifoliata, and is distributed from southeastern Alaska to northern California. We analyzed restriction site variation of chloroplast DNA (cpDNA) using 23 endonucleases in 76 populations representing the entire geographic range of the species and the three recognized varieties. We also employed comparative restriction site mapping of PCR-amplified chloroplast DNA fragments using 16 restriction endonucleases. This species exhibits low cpDNA restriction site variation. No differentiation is evident among varieties of this species based on cpDNA data; some plants of each variety were characterized by each of the two major cpDNA types detected. The two major cpDNA clades, which differ by only a single restriction site mutation, are geographically structured. A northern clade comprises populations from Alaska to central Oregon; most populations analyzed from southern Oregon and California form a southern clade. Populations that possess the typical northern cpDNA type also occur disjunctly to the south at high elevations in the Siskiyou—Klamath Mountain area of southern Oregon and northern California. Conversely, the southern cpDNA type is found disjunctly to the north in the Olympic Peninsula of Washington. Both geographic areas characterized by disjunct cytoplasms are considered glacial refugia.Tiarella trifoliata joins two other species,Tolmiea menziesii andTellima grandiflora, in having well-demarcated northern and southern cpDNA lineages. All three species have similar life-history traits and geographic distributions. We suggest that glaciation may have played a major role in the formation of the cpDNA discontinuities present in these three taxa. The pronounced relationship between cpDNA variation and geographic distribution suggests the potential applicability of intraspecific phylogeography to plants via the analysis of intraspecific cpDNA variation. These three examples also join a rapidly growing data base which indicates that cytoplasms are often geographically structured within species and species complexes.  相似文献   

6.
Molecular divergence betweenGossypium klotzschianum andG. davidsonii was studied. The former is endemic to five of the larger islands of the Galapagos, whileG. davidsonii is restricted to the southern half of Baja California, approximately 2 500 km distant. A substantial body of genetic and taxonomic data suggests that these two species are related as progenitor and derivative. Interspecific hybrids are fully fertile, with no evidence of F2 breakdown and normal segregation of genetic markers. Allozyme analysis of 33 populations for 41 loci indicated that the allelic composition ofG. klotzschianum represents a subset ofG. davidsonii. Although genetic diversity is relatively restricted in both species, calculated measures demonstrate higher levels of genetic variability and greater population structuring inG. davidsonii than inG. klotzschianum. The interspecific genetic identity of 0.87 is typical for progenitor-derivative species pairs. Chloroplast DNAs were surveyed for variation with 25 restriction enzymes using hybridization probes that cover the entire chloroplast genome. No intraspecific and little interspecific variation was detected among 560 cpDNA restriction sites, representing sequence information for approximately 3200 nucleotides. Only 3 mutational differences distinguished the two species, resulting in a sequence divergence estimate of 0.09%. Divergence times were estimated from both the isozyme data and the cpDNA restriction site data. Although these estimates have several sources of error, both molecular data sets were congruent in suggesting that the two lineages diverged between 250000 and 700000 years ago. Accumulated evidence suggests that dispersal was from Baja California to the Galapagos Islands rather than the reverse, and most likely was mediated by trans-oceanic drift.G. klotzschianum may be the only species of the endemic Galapagos flora to have arisen from a northern Mexican progenitor.  相似文献   

7.
We investigated the genetic structure of Miscanthus sinensis ssp. condensatus on Miyake Island, which was devastated by a volcanic eruption in 2000, by amplified fragment length polymorphisms (AFLPs) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for chloroplast DNA (cpDNA) variation, to develop recommendations for the revegetation of devastated sites. Genetic differentiation among populations was significant, and five populations were classified into three regional groups. The aspect ratios of leaf-blades varied significantly among populations, but both geographical proximity and morphological similarities did not precisely reflect genetic similarities. In the airport population, we found a rare haplotype that may have been transmitted from outside the island. These findings will assist the revegetation of the island.  相似文献   

8.
赵小丽  杨耀文  李国栋 《广西植物》2021,41(12):2004-2013
为了探索草果(Amomum tsaoko)的栽培地理起源,该文检测了草果、拟草果(A. paratsaoko)的cpDNA序列变化,并获取了单倍型多态性信息。结果表明:(1)20个草果居群272个植株、5个拟草果居群62个植株共检测到7种单倍型。其中,草果有3种单倍型(H1、H3、H6),拟草果有6种单倍型(H1、H2、H3、H4、H5、H7)。H1和H3为共享单倍型,H6为草果私有单倍型,H2、H4、H5、H7为拟草果私有单倍型。H1为普通单倍型,H2为祖先单倍型。(2)草果居群遗传多样性远小于拟草果居群,遗传变异主要来源于居群内,拟草果居群主要来源于居群间。麻栗坡铁厂(TC)、屏边玉屏(YP)居群的遗传多样性、单倍型多样性高于其他18个草果居群。(3)进一步分析表明,包含屏边、马关、西畴、麻栗坡的云南东南部前端地域和邻接的广西那坡可能共同构成草果栽培驯化起源中心,以麻栗坡为核心区域,向周边的西畴、马关、屏边、那坡扩张。因此,结果显示应对TC、YP、那坡下华(XH)居群加以保护。该研究结果为草果种质资源保护、利用提供了遗传学信息。  相似文献   

9.
Restoration of habitat for endangered species often involves translocation of seeds or individuals from source populations to an area targeted for revegetation. Long-term persistence of a species is dependent on the maintenance of sufficient genetic variation within and among populations. Thus, knowledge and maintenance of genetic variability within rare or endangered species is essential for developing effective conservation and restoration strategies. Genetic monitoring of both natural and restored populations can provide an assessment of restoration protocol success in establishing populations that maintain levels of genetic diversity similar to those in natural populations. California’s vernal pools are home to many endangered plants, thus conservation and restoration are large components of their management. Lasthenia conjugens (Asteraceae) is a federally endangered self-incompatible vernal pool annual with gravity- dispersed seeds. Using the molecular technique of intersimple sequence repeats (ISSRs), this study assessed levels and patterns of genetic variability present within natural and restored populations of L. conjugens. At Travis Air Force Base near Fairfield, California, a vernal pool restoration project is underway. Genetic success of the ecologically based seeding protocol was examined through genetic monitoring of natural and restored populations over a three-year period. Genetic diversity remained constant across the three sampled generations. Diversity was also widely distributed across all populations. We conclude that the protocol used to establish restored populations was successful in capturing similar levels and patterns of genetic diversity to those seen within natural pools. This study also demonstrates how genetic markers can be used to inform conservation and restoration decisions.  相似文献   

10.
Chamaesyce skottsbergii var. skottsbergii is federally listed as an endangered taxon, and is found in small and isolated populations restricted to calcareous soils in dry shrubland habitats on the Hawaiian islands of Oahu and Molokai. Concern over the genetic relationship among these disjunct populations arose as a result of threats to the habitat of the Oahu population. The populations were examined using random amplified polymorphic DNA (RAPD) markers and sequence analysis of the internal transcribed spacer (ITS) region of the rDNA cistron. Chamaesyce skottsbergii var. vaccinioides, a closely related variety found in several small populations on Molokai, was used for baseline comparison of the genetic divergence among populations. RAPD analysis demonstrated that variation within and among populations is the highest for any Hawaiian species examined. Polymorphism was greater than 95% within populations and was 99.4% at the species level. Similarly, measures of genetic similarity indicate that differentiation among these populations is higher than is known for some species. Both RAPD and ITS sequence analysis indicate that populations of C. skottsbergii var. skottsbergii on Oahu and Molokai are genetically distinct, and the extent of this genetic differentiation supports the recognition of these populations as distinct varieties. The Molokai population is in fact much more closely related to var. vaccinioides than to var. skottsbergii on Oahu, and thus should be recognized by the previously used variety name, C. skottsbergii var. audens. Further conservation measures for each of the varieties are addressed.  相似文献   

11.
Despite the great anthropogenic interference on urban streams, information is still scarce about the genetic variability and structure of native fish populations inhabiting such streams. In the present study, random amplified polymorphic DNA (RAPD) markers were used to analyze genetic variability and structure of populations assigned to the Neotropical fish species Astyanax scabripinnis from an urban stream located in Londrina, Paraná State, southern Brazil. Thirty individuals of this species were collected from three sites throughout the upper Cambé stream. A total of 10 primers amplified 159 loci, of which 128 (80.5%) were polymorphic. Each of the three populations showed very similar proportions of polymorphic loci, which ranged from 63.5 to 64.8%. Unbiased genetic distances varied from 0.0612 to 0.0646. Thetap-test values indicated moderate to high genetic differentiation among individuals from different localities. The number of migrants varied from 1.34 to 1.46, suggesting a low gene flow between populations. The genetic similarity among all individuals studied ranged from 0.424 to 0.848. The results suggest that populations of A. scabripinnis in Cambé stream are undergoing genetic differentiation.  相似文献   

12.
Genetic divergence in Ditrema jordani was investigated from sequence variations on the mitochondrial cytochrome b gene. Clear genetic differences were found between specimens collected from the Mie and Shizuoka prefectures (westward of Izu Peninsula) and those from the Kanagawa and Chiba prefectures (eastward of Izu Peninsula). The uncorrected genetic distance between the two groups, which may represent separate taxa, was much greater (3.1–3.7%) than that between D. temminckii and D. viride (1.1–2.4%), and between two subspecies of D. temminckii (0.8–1.3%), suggesting that the Izu Peninsula acts as a stable geographic barrier to gene flow between the D. jordani groups. The clear genetic divergence between the two geographic populations of D. jordani may be partly related to direct development (viviparity) and low dispersal ability in the genus.  相似文献   

13.
The genetic structure of mangrove species is greatly affected by their geographic history. Nine natural populations of Ceriops tagal were collected from Borneo, the Malay Peninsula, and India for this phylogeographic study. Completely different haplotype compositions on the east versus west coasts of the Malay Peninsula were revealed using the atpB-rbcL and trnL-trnF spacers of chloroplast DNA. The average haplotype diversity (Hd) of the total population was 0.549, nucleotide diversity (θ) was 0.030, and nucleotide difference (π) was 0.0074. The cladogram constructed by the index of population differentiation (G ST) clearly separated the South China Sea populations from the Indian Ocean populations. In the analysis of the minimum spanning network, the Indian Ocean haplotypes were all derived from South China Sea haplotypes, suggesting a dispersal route of C. tagal from Southeast Asia to South Asia. The Sunda Land river system and surface currents might be accountable for the gene flow directions in the South China Sea and Bay of Bengal, respectively. The historical geography not only affected the present genotype distribution but also the evolution of C. tagal. These processes result in the genetic differentiation and the differentiated populations that should be considered as Management Units (MUs) for conservation measurements instead of random forestation, which might lead to gene mixing and reduction of genetic variability of mangrove species. According to this phylogeographic study, populations in Borneo, and east and west Malay Peninsula that have unique genotypes should be considered as distinct MUs, and any activities resulting in gene mixing with each other ought to be prevented.  相似文献   

14.
RAPD fingerprinting was used to study species boundaries in narrowly distributed endemic species in Antirrhinum section Sempervirentia. Based on RAPD data, similarity values within species were relatively high but pair-wise similarity values among species were low. Partitioning of the overall RAPD variation using AMOVA showed that most of the variation was found among species (58.06%), whereas the remaining phenotypic diversity was distributed among populations (25.18%) and among individuals within populations (16.76%). Comparison of the matrices of geographical distances and phenetic distances (1-Dice index) among populations using the Mantel test showed a moderate, but statistically significant correlation (r=0.588, P < 0.01), suggesting that isolation by distance is responsible for the distribution of genetic variation among Antirrhinum populations. Phenetic relationships among Antirrhinum samples based on a Dice similarity matrix showed a clear taxonomic pattern, confirming the grouping of individuals within their own populations and the clustering of populations within species. Individuals of A. charidemi, A. valentinum and A. subbaeticum, from subsection Valentina, made up a discrete group, whereas the samples belonging to subsection Sempervirentia (A. petegasii, A. sempervirens, A. microphyllum, A. pulverulentum) clustered together. RAPD data are entirely congruent with the subsection classification scheme proposed by Fernández Casas (1997) in section Sempervirentia. However, A. subbaeticum, treated as a synonym of A. valentinum by Fernández-Casas (1997), showed an unique RAPD profile characterized by the highest number of fixed species-specific markers found in section Sempervirentia. Thus, although A. valentinum appeared the most closely related species to A. subbaeticum, molecular data suggested that this species merits taxonomic distinction.  相似文献   

15.
Genetic variability in 10 natural Tunisian populations of Medicago laciniata were analysed using 19 quantitative traits and 12 polymorphic microsatellite loci. A large degree of genetic variability within-populations and among-populations was detected for both quantitative characters and molecular markers. High genetic differentiation among populations for quantitative traits was seen, with Q ST = 0.47, and F ST = 0.47 for microsatellite markers. Several quantitative traits displayed no statistical difference in the levels of Q ST and F ST . Further, significant correlations between quantitative traits and eco-geographical factors suggest that divergence in the traits among populations may track environmental differences. There was no significant correlation between genetic variability at quantitative traits and microsatellite markers within populations. The site-of-origin of eco-geographical factors explain between 18.13% and 23.40% of genetic variance among populations at quantitative traits and microsatellite markers, respectively. The environmental factors that most influence variation in measured traits among populations are assimilated phosphorus (P205) and mean annual rainfall, followed by climate and soil texture, altitude and organic matter. Significant associations between eco-geographical factors and gene diversity, H e , were established in five-microsatellite loci suggesting that these simple sequence repeats (SSRs) are not necessarily biologically neutral.  相似文献   

16.
We studied allozyme and chloroplast (cp) DNA variation in natural populations of Pinus kesiya and P. merkusii from Thailand and Vietnam. The results showed striking differences between the two species in the amount and distribution of allozyme variation. P. kesiya harboured considerable allozyme variation and showed weak interpopulational differentiation. In contrast, P. merkmii had very low intrapopulational variability but a high level of interpopulational differentiation. The average Nei's genetic distance separating the two species was exceptionally high (0.701) taking into account their close taxonomic placement in the same subsection Sylvestres. The constructed phylogenetic trees revealed very early divergence of P. kesiya and P. merkusii. The present analysis of cpDNA variation also confirmed the dissimilar character of these two species and was compatible with other evidence indicating the outstanding position of P. merkusii as compared to other Asian members of the subsection Sylvestres. Analysis of cpDNA variation in sympatric populations of P. kesiya and P. merkusii revealed that they are pure representatives of the species in question. This result indicates that despite an overlapping distribution P. kesiya and P. merkusii do not hybridise in nature. We suggest that the distinctive character of P. merkusii is a result of an early separation from other Eurasian pines. Despite spatial proximity, P. kesiya and P. merkusii are kept apart by strong reproductive barriers. The low genetic variability of P. merkusii may be explained by previous bottlenecks, reduced gene flow among populations, and an inbreeding due to small population size and asynchronous flowering.  相似文献   

17.
Nineteen natural Mediterranean fir populations, belonging to eight species and to one natural hybrid (A. ×borisii-regis), were investigated by starch and polyacrylamide gel electrophoresis. A total of 31 alleles was scored at eight loci (IDH-B, ACP-A, PER-B, 6PGD-A, 6PGD-B, MNR-B, PGI-B, PGM-A. Great variation was observed in the heterozygosity among the population studied and ranged from 0.010 (A. pinsapo) to 0.328 (A. cephalonica). The interpopulation genetic diversity was about 26% of the total genetic diversity. From the dendrogram, new phylogenetic relationships were revealed. High affinity was observed between the Calabrian fir population and the one from north-west Greece as well as betweenA. equi-trojani grown in Asia Minor and the southern Greek populations. Species specific alleles were found inA. cilicica. From the findings of the present work, a new hypothesis concerning the taxonomy, distribution and evolution ofAbies species in the Balkan Peninsula is supported.  相似文献   

18.
There has been much taxonomic confusion over the identification of Prosopis species, especially where introduced. Prosopis juliflora is the most widespread species in the arid and semi-arid tropics, although it has been confused with other species, particularly the closely related Prosopis pallida. In this study, RAPDs markers were used for the first time to distinguish between these species. Eighteen primers were used in amplification reactions, which yielded an average of 120 bands per accession. A dendrogram showing genetic similarities among accessions was constructed using UPGMA cluster analysis and the Nei and Li similarity coefficient. The genetic similarity observed between P. juliflora and P. pallida is similar to the value in sympatric Prosopis species in North America, and reconsideration of the series rank in section Algarobia is suggested. Species-specific markers confirmed that material in Burkina Faso is P. juliflora, but suggested that material collected in Brazil, Cape Verde and Senegal is P. pallida, whereas this has previously been identified as P. juliflora.  相似文献   

19.
An investigation of randomly amplified polymorphic DNA (RAPD) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) marker distribution was made for two well-characterised hybrids and their parents,Leucaena leucocephala andL. esculenta andParkinsonia aculeata andCercidium praecox. Three chloroplast DNA (cpDNA) markers identified the maternal parent of eachL. leucocephala ×L. esculenta hybrid. Fifteen species-diagnostic RAPD markers (invariant in one taxon and absent from the other) were always present in theLeucaena hybrid and assumed to be of nuclear origin, whilst three RAPD markers showed expression patterns identical to the cpDNA markers and were assumed to be of organellar origin. No RAPD or PCR-RFLP taxon-diagnostic markers were discovered for eitherP. aculeata orC. praecox. However, 21 RAPD markers were species-specific (polymorphic within one taxon but absent from the other) and Southern analysis indicated that none of the markers were of organellar origin. Only 67% additivity of markers specific toP. aculeata andC. praecox was demonstrated in the hybrids between these two species, whilst inLeucaena 97% additivity was demonstrated. Differences between the two hybridising situations were related to the behaviour of the molecular markers and the biology of the species.  相似文献   

20.
Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D. dyeriana. Based on random amplified polymorphic DNA (RAPD) markers, a comparative study of the genetic diversity and genetic structure of Dipteronia was performed. In total, 128 and 103 loci were detected in 17 D. sinensis populations and 4 D. dyeriana populations, respectively, using 18 random primers. These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%, respectively, indicating that the genetic diversity of D. sinensis was higher than that of D. dyeriana. Analysis, based on similarity coefficients, Shannon diversity index and Nei gene diversity index, also confirmed this result. AMOVA analysis demonstrated that the genetic variation of D. sinensis within and among populations accounted for 56.89% and 43.11% of the total variation, respectively, and that of D. dyeriana was 57.86% and 42.14%, respectively. The Shannon diversity index and Nei gene diversity index showed similar results. The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high. Analysis of the genetic distance among populations also supported this conclusion. Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon. The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D. sinensis (p < 0.01), while no significant correlation was found between genetic and geographical distances among populations of D. dyeriana. This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale. This result may be related to differences in the selection pressure on species by their habitats with different distribution ranges. We suggest that in situ conservation efforts should focus on establishing more sites to protect the natural populations and their habitats. Ex situ conservation efforts should focus on enhancing the exchange of seeds and seedlings among populations to facilitate gene exchange and recombination, and to help conserve genetic diversity. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(5): 785–792 [译自: 植物生态学报, 2005, 29(5): 785–792]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号