首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Areas of suitable habitat for species and communities have arisen, shifted, and disappeared with Pleistocene climate cycles, and through this shifting landscape, current biodiversity has found paths to the present. Evolutionary refugia, areas of relative habitat stability in this shifting landscape, support persistence of lineages through time, and are thus crucial to the accumulation and maintenance of biodiversity. Areas of endemism are indicative of refugial areas where diversity has persisted, and endemism of intraspecific lineages in particular is strongly associated with late-Pleistocene habitat stability. However, it remains a challenge to consistently estimate the geographic ranges of intraspecific lineages and thus infer phylogeographic endemism, because spatial sampling for genetic analyses is typically sparse relative to species records. We present a novel technique to model the geographic distribution of intraspecific lineages, which is informed by the ecological niche of a species and known locations of its constituent lineages. Our approach allows for the effects of isolation by unsuitable habitat, and captures uncertainty in the extent of lineage ranges. Applying this method to the arc of rainforest areas spanning 3500 km in eastern Australia, we estimated lineage endemism for 53 species of rainforest dependent herpetofauna with available phylogeographic data. We related endemism to the stability of rainforest habitat over the past 120,000 years and identified distinct concentrations of lineage endemism that can be considered putative refugia. These areas of lineage endemism are strongly related to historical stability of rainforest habitat, after controlling for the effects of current environment. In fact, a dynamic stability model that allows movement to track suitable habitat over time was the most important factor in explaining current patterns of endemism. The techniques presented here provide an objective, practical method for estimating geographic ranges below the species level, and including them in spatial analyses of biodiversity.  相似文献   

2.
Climate oscillations of the Quaternary drove the repeated expansion and contraction of ecosystems. Alpine organisms were probably isolated in sky island refugia during warm interglacials, such as now, and expanded their range by migrating down-slope during glacial periods. We used population genetic and phylogenetic approaches to infer how paleoclimatic events influenced the distribution of genetic variation in the predominantly alpine butterfly Parnassius smintheus. We sequenced a 789 bp region of cytochrome oxidase I for 385 individuals from 20 locations throughout the Rocky Mountains, ranging from southern Colorado to northern Montana. Analyses revealed at lease two centers of diversity in the northern and southern Rocky Mountains and strong population structure. Nested clade analysis suggested that the species experienced repeated cycles of population expansion and fragmentation. The estimated ages of these events, assuming a molecular clock, corresponded with paleoclimatic data on habitat expansion and contraction over the past 400,000 years. We propose that alpine butterflies persisted in an archipelago of isolated sky islands during interglacials and that populations expanded and became more connected during cold glacial periods. An archipelago model implies that the effects of genetic drift and selection varied among populations, depending on their latitude, area, and local environment. Alpine organisms are sensitive indicators of climate change and their history can be used to predict how high-elevation ecosystems might respond to further climate warming.  相似文献   

3.
Glow-worms are bioluminescent fly larvae (Order Diptera, genus Arachnocampa) found only in Australia and New Zealand. Their core habitat is rainforest gullies and wet caves. Eight species are present in Australia; five of them have been recently described. The geographic distribution of species in Australia encompasses the montane regions of the eastern Australian coastline from the Wet Tropics region of northern Queensland to the cool temperate and montane rainforests of southern Australia and Tasmania. Phylogenetic trees based upon partial sequences of the mitochondrial genes cytochrome oxidase II and 16S mtDNA show that populations tend to be clustered into allopatric geographic groups showing overall concordance with the known species distributions. The deepest division is between the cool-adapted southern subgenus, Lucifera, and the more widespread subgenus, Campara. Lucifera comprises the sister groups, A. tasmaniensis, from Tasmania and the newly described species, A. buffaloensis, found in a high-altitude cave at Mt Buffalo in the Australian Alps in Victoria. The remaining Australian glow-worms in subgenus Campara are distributed in a swathe of geographic clusters that extend from the Wet Tropics in northern Queensland to the temperate forests of southern Victoria. Samples from caves and rainforests within any one geographic location tended to cluster together within a clade. We suggest that the morphological differences between hypogean (cave) and epigean (surface) glow-worm larvae are facultative adaptations to local microclimatic conditions rather than due to the presence of cryptic species in caves.  相似文献   

4.
Velvet worms (Onychophora) are restricted to moist, humid microclimates, but are poorly known from south‐east Queensland, Australia, where they are typically rainforest fauna. We made the unlikely observation of one of these invertebrates clinging to floating debris in a wetland on North Stradbroke Island. Palaeoecology of this wetland reveals that it once was within rainforest and has remained moist for at least the past 80 000 years, thus potentially harbouring an onychophoran population as a relic of a past broader, rainforest distribution. The presence of this animal, floating in the wetland, can be explained by recent climate, since the wetland filled following heavy rainfall shortly before the observation. This highlights the importance of groundwater‐fed wetlands as evolutionary refugia for moisture‐dependent biota.  相似文献   

5.
The rainforests, wet sclerophyll forests and temperate heathlands of the Australian mesic zone are home to a diverse and highly endemic biota, including numerous old endemic lineages restricted to refugial, mesic biomes. A growing number of phylogeographic studies have attempted to explain the origins and diversification of the Australian mesic zone biota, in order to test and better understand the mode and tempo of historical speciation within Australia. Assassin spiders (family Archaeidae) are a lineage of iconic araneomorph spiders, characterised by their antiquity, remarkable morphology and relictual biogeography on the southern continents. The Australian assassin spider fauna is characterised by a high diversity of allopatric species, many of which are restricted to individual mountains or montane systems, and all of which are closely tied to mesic and/or refugial habitats in the east and extreme south-west of mainland Australia. We tested the phylogeny and vicariant biogeography of the Australian Archaeidae (genus Austrarchaea Forster & Platnick), using a multi-locus molecular approach. Fragments from six mitochondrial genes (COI, COII, tRNA-K, tRNA-D, ATP8, ATP6) and one nuclear protein-coding gene (Histone H3) were used to infer phylogenetic relationships and to explore the phylogeographic origins of the diverse Australian fauna. Bayesian analyses of the complete molecular dataset, along with differentially-partitioned Bayesian and parsimony analyses of a smaller concatenated dataset, revealed the presence of three major Australian lineages, each with non-overlapping distributions in north-eastern Queensland, mid-eastern Australia and southern Australia, respectively. Divergence date estimation using mitochondrial data and a rate-calibrated relaxed molecular clock revealed that major lineages diverged in the early Tertiary period, prior to the final rifting of Australia from East Antarctica. Subsequent speciation occurred during the Miocene (23-5.3 million years ago), with tropical and subtropical taxa diverging in the early-mid Miocene, prior to southern and temperate taxa in the mid-late Miocene. Area cladograms reconciled with Bayesian chronograms for all known Archaeidae in southern and south-eastern Australia revealed seven potentially vicariant biogeographic barriers in eastern Queensland, New South Wales and southern Australia, each proposed and discussed in relation to other mesic zone taxa. Five of these barriers were inferred as being of early Miocene age, and implicated in the initial vicariant separation of endemic regional clades. Phylogeographic results for Australian Archaeidae are congruent with a model of sequential allopatric speciation in Tertiary refugia, as driven by the contraction and fragmentation of Australia’s mesic biomes during the Miocene. Assassin spiders clearly offer great potential for further testing historical biogeographic processes in temperate and eastern Australia, and are a useful group for better understanding the biology and biogeography of the Australian mesic zone.  相似文献   

6.
Aim Climatic fluctuations during the Pleistocene have shaped the population structure of many extant taxa. However, few studies have examined widespread species inhabiting the Australian continent, where periods of increased aridity characterized the Pleistocene. Here we investigate the phylogeography and population history of a widespread and vagile southern Australian marsupial, the western grey kangaroo (Macropus fuliginosus). Location Southern Australia. Methods We examined the variation of the mitochondrial DNA (mtDNA) control region from 511 individuals of M. fuliginosus sampled throughout their transcontinental distribution. Maximum likelihood and Bayesian analyses were used to investigate the phylogeography and coalescence analyses were then used to test hypothesized biogeographical scenarios. Results The combined results of the phylogeographical and coalescence analyses revealed a complex evolutionary history. Macropus fuliginosus originated in the south‐west of the continent, with north‐western and south‐western populations subsequently diverging as a result of vicariance events during the mid‐Pleistocene. Subsequent arid phases affected these populations differently. In the north‐west, the expansion and contraction of the arid zone resulted in repeated vicariance events and multiple divergent north‐western mtDNA subclades. In contrast, the south‐western population was less impacted by climatic oscillations but gave rise to a major transcontinental eastward expansion. Main conclusions Macropus fuliginosus exhibits the genetic signature of divergence due to unidentified barriers in south‐western Western Australia, while previously identified barriers across southern Australia appear to have had little impact despite evidence of a broad‐scale range expansion prior to the Last Glacial Maximum (LGM). This pattern of localized expansion and contraction is comparable to unglaciated regions in both the Northern and Southern Hemispheres. Furthermore, this study indicates that despite the potential similarities between Northern Hemisphere glaciation and the activation of dune systems in the Australian arid zone, both of which rendered large areas inhospitable, the biotic responses and resultant phylogeographical signatures are dissimilar. Whereas a limited number of major geographically concordant refugia are observed in glaciated areas, the Southern Hemisphere arid zone appears to be associated with multiple species‐specific idiosyncratic refugia.  相似文献   

7.
Phylogeographic studies of flora in species-rich south-western Australia point to complex evolutionary histories, reflecting patterns of persistence and resilience to climatic changes during the Pleistocene. We asked whether coastal areas of the mid-west and south, as well as granite outcrops and inland ranges, have acted as major refugia within this region during Pleistocene climatic fluctuations by analysing phylogeographic patterns in the shrub Calothamnus quadrifidus R.Br. (Myrtaceae). We determined variation in chloroplast DNA data for 41 populations across the geographic range. Relationships and major clades were resolved using parsimony and Bayesian analyses. We tested for demographic and spatial expansion of the major clades and estimated clade divergence dates using an uncorrelated, lognormal relaxed clock based on two conservative chloroplast mutation rates. Two distinct phylogeographic clades were identified showing divergence during the Pleistocene, consistent with other phylogeographic studies of south-west Australian flora, emphasising the impact of climatic oscillations in driving divergence in this landscape. The southern clade was more diverse, having higher haplotype diversity and greater genetic structure, while the northern clade showed evidence of fluctuation in population size. Regions of high haplotype diversity with adjacent areas of low diversity observed in each clade indicated the locations of two coastal refugia: one on the south coast and another along the mid-west coast. This is the first evidence for major Pleistocene refugia using chloroplast genetic data in a common, widespread species from this region.  相似文献   

8.
We examine the effects of historical climate change on vertebrate differentiation in tropical rainforest by comparing phylogeographic patterns in six species of widespread rainforest-restricted herpetofauna from throughout the Wet Tropics of Australia. Qualitative and quantitative comparisons of phylogeographic structure reveal strikingly similar patterns of pre-Pleistocene vicariant population differentiation on either side of a previously identified biogeographic break (variously referred to as the Black Mountain Barrier or Corridor; BMC). While divergence across the BMC antedates the Pleistocene, the impact of Quaternary climate change is apparent in populations on either side of the BMC. Consistent with palaeoclimatological reconstructions for the region, the distribution and degree of mtDNA diversity suggests that populations were fragmented and reduced to multiple refugia during Pleistocene glacial periods, with expansion following Holocene rainforest recovery. This pattern is repeated on both sides of the BMC, but substantial differences in the amount and distribution of mtDNA diversity within species indicate the importance of species-specific ecological characteristics. The historical processes of extinction and (re)colonization revealed by the comparative phylogeographic analysis of mtDNA sequences substantiate earlier suggestions that current regional patterns of species distribution and diversity in the Wet Tropics are largely determined by local extinctions and subsequent recolonization driven by Quaternary climate changes.  相似文献   

9.
Global climate change is a threat to ecosystems that are rich in biodiversity and endemism, such as the World Heritage‐listed subtropical rainforests of central eastern Australia. Possible effects of climate change on the biota of tropical rainforests have been studied, but subtropical rainforests have received less attention. We analysed published data for an assemblage of 38 subtropical rainforest vertebrate species in four taxonomic groups to evaluate their relative vulnerability to climate change. Focusing on endemic and/or threatened species, we considered two aspects of vulnerability: (i) resistance, defined by indicators of rarity (geographical range, habitat specificity and local abundance); and (ii) resilience, defined by indicators of a species potential to recover (reproductive output, dispersal potential and climatic niche). Our analysis indicated that frogs are most vulnerable to climate change, followed by reptiles, birds, then mammals. Many species in our assemblage are regionally endemic montane rainforest specialists with high vulnerability. Monitoring of taxa in regenerating rainforest showed that many species with high resilience traits also persisted in disturbed habitat, suggesting that they have capacity to recolonize habitats after disturbance, that is climate change‐induced events. These results will allow us to prioritize adaptation strategies for species most at risk. We conclude that to safeguard the most vulnerable amphibian, reptile and bird species against climate change, climatically stable habitats (cool refugia) that are currently without protection status need to be identified, restored and incorporated in the current reserve system. Our study provides evidence that montane subtropical rainforest deserves highest protection status as habitat for vulnerable taxa.  相似文献   

10.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

11.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

12.
The major climatic oscillations that characterized the Quaternary had a great influence on the evolution and distribution of several species. During cold periods, the distribution of temperate‐adapted species became fragmented with many surviving in southern refugia (Iberian, Italian, and Balkan Peninsulas). Red deer was one of the species that contracted its original range to southern refugia. Currently, two main lineages have been described for the species: western and eastern. We have analyzed fossils pre‐dating the last glacial maximum (LGM) from Liñares cave (NW Spain) that belongs to the peripheral range of the western clade, and fossils from the Danish Holocene belonging to the central part of the same clade. Phylogenetic analyses place our samples in the western clade. However, some specimens from Liñares represent an early split in the tree along with other pre‐LGM western samples from previous studies. Despite low bootstrap values in the Bayesian phylogenies, haplotype networks connect these foreign haplotypes to the eastern clade. We suggest a mixed phylogeographical model to explain this pattern with range expansions from the east during the expansion phase after the cold periods in marine isotope stage 3. We find slight isolation by distance in post‐LGM populations that could be a consequence of the recolonization from southern refugia after the LGM.  相似文献   

13.
Research investigating the geographical context of speciation has primarily focused on abiotic factors such as the role of Pleistocene glacial cycles, or geotectonic events. Few study systems allow a direct comparison of how biological differences, such as dispersal behaviour, affect population genetic structure of organisms that were subdivided during the Pleistocene. Mormon crickets exist in solitary and gregarious 'phases', which broadly correspond with an east-west mtDNA division across the Rocky Mountains. Gregarious individuals form bands that can move up to 2 km daily. This study assessed whether population genetic structure results mainly from deep Pleistocene vicariance or if we can also detect more recent genetic patterns due to phase and dispersal differences superimposed on the older, deeper divisions. We found that separation in refugia was a more important influence on genetic divergence than phase, with the Rockies acting as a barrier that separated Mormon cricket populations into eastern and western refugia during Pleistocene glacial cycles. However, patterns of isolation by distance differ between eastern and western clades for both mitochondrial and nuclear DNA, with greater divergence within the eastern, solitary clade. An mtDNA haplotype mismatch distribution is compatible with historical population expansion in the western clade but not in the eastern clade. A persistent (and possibly sex-biased) difference in dispersal ability has most likely influenced the greater population genetic structure seen in the eastern clade, emphasizing the importance of the interaction of Quaternary climate fluctuations and geography with biotic factors in producing the patterns of genetic subdivision observed today.  相似文献   

14.
I collected mitochondrial DNA sequences—hypervariable region 1 of the control region—from 281 eastern chimpanzees in 19 geographically defined populations and calculated genetic diversity measures to test the hypothesis that populations inhabiting the reconstructed locations of Pleistocene forest refugia harbor higher genetic diversities than those of other populations. The hypothesis is only weakly supported. Population genetic diversity is not significantly correlated with geographic proximity to refugia, with the area of forest that the populations currently occupy, or with the degree of geographic isolation of the populations. However, the two populations displaying the consistently highest genetic diversities are located in refuge areas: Uganda's Rwenzori Mountains and the eastern Democratic Republic of Congo's Ituri Forest. These results, in combination with previously findings, imply that chimpanzees may have lived both in and out of refugia during periods when tropical forests were restricted to refugia. This interpretation is consistent with the notion of chimpanzees as an extraordinarily vagile species, capable of maintaining gene flow across habitat mosaics of forest, woodland, and savannah.  相似文献   

15.
The southern European peninsulas (Iberian, Italian and Balkan) are traditionally recognized as glacial refugia from where many species colonized central and northern Europe after the Last Glacial Maximum (LGM). However, evidence that some species had more northerly refugia is accumulating from phylogeographic, palaeontological and palynological studies, and more recently from species distribution modelling (SDM), but further studies are needed to test the idea of northern refugia in Europe. Here, we take a rarely implemented multidisciplinary approach to assess if the pygmy shrew Sorex minutus, a widespread Eurasian mammal species, had northern refugia during the LGM, and if these influenced its postglacial geographic distribution. First, we evaluated the phylogeographic and population expansion patterns using mtDNA sequence data from 123 pygmy shrews. Then, we used SDM to predict present and past (LGM) potential distributions using two different training data sets, two different algorithms (Maxent and GARP) and climate reconstructions for the LGM with two different general circulation models. An LGM distribution in the southern peninsulas was predicted by the SDM approaches, in line with the occurrence of lineages of S. minutus in these areas. The phylogeographic analyses also indicated a widespread and strictly northern‐central European lineage, not derived from southern peninsulas, and with a postglacial population expansion signature. This was consistent with the SDM predictions of suitable LGM conditions for S. minutus occurring across central and eastern Europe, from unglaciated parts of the British Isles to much of the eastern European Plain. Hence, S. minutus likely persisted in parts of central and eastern Europe during the LGM, from where it colonized other northern areas during the late‐glacial and postglacial periods. Our results provide new insights into the glacial and postglacial colonization history of the European mammal fauna, notably supporting glacial refugia further north than traditionally recognized.  相似文献   

16.
We studied ventilation in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus), respectively, within the range of ambient temperatures (T(a)) from -5 degrees to 45 degrees C. At thermoneutral temperatures (Ta=25 degrees C), there were no differences between the species in respiratory frequency, tidal volume, total ventilation, or oxygen extraction. The ventilatory patterns of the kangaroos were markedly different from those predicted from the allometric equation derived for placentals. The kangaroos had low respiratory frequencies and higher tidal volumes, even when adjustment was made for their lower basal metabolism. At Ta>25 degrees C, ventilation was increased in the kangaroos to facilitate respiratory water loss, with percent oxygen extraction being markedly lowered. Ventilation was via the nares; the mouth was closed. Differences in ventilation between the two species occurred at higher temperatures, and at 45 degrees C were associated with differences in respiratory evaporative heat loss, with that of M. giganteus being higher. Panting in kangaroos occurred as a graded increase in respiratory frequency, during which tidal volume was lowered. When panting, the desert red kangaroo had larger tidal volumes and lower respiratory frequencies at equivalent T(a) than the eastern grey kangaroo, which generally inhabits mesic forests. The inference made from this pattern is that the red kangaroo has the potential to increase respiratory evaporative heat loss to a greater level.  相似文献   

17.
Summary Four large underpasses, specifically designed for movements by fauna, form part of a major road upgrade project on the Atherton Tablelands in northeast Queensland, Australia. We describe the design and rationale of a project to test their effectiveness in restoring habitat continuity for tropical rainforest fauna. The large blocks of upland rainforest divided by the road are recognized for their high faunal conservation significance, forming habitat for many rare or threatened species. Ecologists, road engineers and the Atherton Tablelands conservation community have united with a common conservation goal: to design the 'furniture' within the underpasses and accomplish rainforest revegetation to provide protective cover and attract fauna to underpass entrances. Prior to construction, small mammals were trapped weekly for several months in habitats close to the road upgrade. The small mammal community comprised grassland species in abandoned pasture and differed significantly from the rainforest specialists found in three closed canopy habitats: rainforest edge, rainforest interior and Lantana shrubland. Rainforest restoration works designed to restore connectivity for rainforest fauna across this abandoned pastureland (via the underpasses to major rainforest blocks to the north and south of the road) are currently in progress. Monitoring of the effectiveness of the underpasses in allowing faunal movements will involve the use of infra-red-triggered cameras within the underpasses and near underpass entrances, and a survey of road-killed fauna both prior to and postconstruction. Further examination of small mammal community structure and movements, with respect to both the new road and the underpasses, will be undertaken once rainforest plantings have become established. This evaluation should provide insights for further road-associated restoration projects in rainforest regions.  相似文献   

18.
An artificial neural network is used to classify environments, including climate, terrain and soil variables, according to their suitability for fifteen structural/environmental forest classes in the Wet Tropics Bioregion of north-east Queensland. We map the environments characteristic of these forest classes in four climate regimes (the present and three past climate scenarios), quantify the changes in area of these environments in response to past regional changes in climate and identify areas that would have been environmentally suitable for rainforests at last glacial maximum (glacial refugia). We also identify areas that would have been suitable for upland and highland rainforest classes during the warmest parts of the interglacial (interglacial refugia) and map locations that consistently remain favourable to specific forest classes despite large changes in climate.In the climate of the last glacial maximum (LGM), rainforest environments are predicted in three relatively distinct refugia in the northern, central and southern Wet Tropics. Only three percent of the total area contains lowland, Mesophyll Vine Forest and the majority of the area of the rainforest refugia supports upland rainforest classes. In the cool, wet climate of the Pleistocene/Holocene transition (PHT), rainforest environments expand to form a more or less continuous block from the northern limits of the region to the Walter Hill Range, except for discontinuous patches extending through the Seaview and Paluma Ranges in the south. During the Holocene climatic optimum (HCO), rainforest environments become more fragmented, especially in the south. Lowland rainforest environments are very extensive in this climate while upland rainforest classes are restricted to what we term “interglacial refugia”.Estimated distributions and stable locations (consistently predicted in all four climate scenarios) for the various rainforest environment classes are our main, novel contribution. Each forest environment responds individualistically to climate change. Our results confirm the highly dynamic nature of the Wet Tropics landscape and present a much more detailed picture of landscape change since the late Pleistocene than previously has been available. This mapping exercise should be useful in the future for analyses of present-day biogeographic patterns. We argue that empirical modelling approaches have an important role in palaeoecology and global change research that is complementary to the developing mechanistic methods.  相似文献   

19.
Variable hydrological regimes and habitat availability are factors that affect the distribution of freshwater dependent species and are expected to influence their levels of genetic diversity. Although geologically relatively stable, the south eastern region of Australia has experienced significant changes in hydrological conditions during the Quaternary. This area has also been recently affected by anthropogenic activities, resulting in dramatic population declines of Macquarie Perch (Macquaria australasica). We conducted a range-wide phylogeographic study of this endangered fish to assess the relationship between landscape and freshwater fish evolution in south eastern Australia and infer levels of genetic diversity and population structure. Surprisingly, we detected high genetic diversity, with 46 mtDNA control region haplotypes found across 37 sampling locations. Some lineages were remarkably divergent; one represents a putative undescribed species that probably went extinct during the period of this study. Our reconstruction of population history using a combination of coalescent and phylogenetic methods indicates that the species originated on the coast, east of the Great Dividing Range (GDR), with subsequent colonisation of the Murray-Darling basin, west of the GDR. Nested clade and IM analyses inferred a series of range expansions and fragmentations across the species range consistent with the history of climatic oscillations in south eastern Australia during the Pleistocene. We conclude that the unexpected high levels of diversity and divergence observed in M. australasica may be due to specific habitat requirements, localised recruitment, and Pleistocene climate fluctuations. Under expectations of a drier climate and increased sea levels due to global warming, populations of this and other freshwater species may be expected to experience increased habitat fragmentation and loss of genetic diversity. Conservation management should focus on habitat protection, the maintenance of genetic diversity and taxonomic review.  相似文献   

20.
Climate oscillations and landscape heterogeneity make the historical population processes of organisms of the Qinghai–Tibet Plateau quite complex. We used chloroplast DNA sequences and amplified fragment length polymorphism (AFLPs) to study the phylogeography and genetic variation of the Qinghai–Tibet Plateau endemic Spenceria ramalana Trimen. The parsimony network contains two star-like evolutionary units, nested into two nested clades, coinciding with geographic population groups indicated by samova software. The central group shows genetic homogeneity, indicating a bottleneck or founder effect of population dynamics. Margin groups contribute more haplotype diversity (CT), indicating potential refugia. Several expansion events during several interglacial periods were detected. The latest expansion of the eastern population contributed to the modern population structure of the central area. Four AFLP clusters were detected. Higher CT, a relict pattern of haplotype distribution and DW values of marginal populations, confirmed the location of potential montane refugia. Relict distribution pattern, nested clade phylogeographic analysis conclusions, and restricted gene flow detected by AFLPs indicated an isolation pattern of the populations of montane areas. Heterogeneity of landscape of the western and southern montane areas could be the main barrier for gene flow. Moisture conditions and ecotype transformation might help to build the phylogeographic pattern of this species. Neither chloroplast DNA markers nor AFLP was able to differentiate the two varieties of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号