首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1−/− mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1−/− mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1−/− mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1−/− mice. Transplantation of MCP-1−/− bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1−/− mice increased lung metastasis. The primary tumors of MCP-1−/− mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1−/− mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment.  相似文献   

2.

Objective

The purpose of this study was to investigate chemokine profiles and their functional roles in the early phase of fracture healing in mouse models.

Methods

The expression profiles of chemokines were examined during fracture healing in wild-type (WT) mice using a polymerase chain reaction array and histological staining. The functional effect of monocyte chemotactic protein-1 (MCP-1) on primary mouse bone marrow stromal cells (mBMSCs) was evaluated using an in vitro migration assay. MCP-1−/− and C-C chemokine receptor 2 (CCR2)−/− mice were fractured and evaluated by histological staining and micro-computed tomography (micro-CT). RS102895, an antagonist of CCR2, was continuously administered in WT mice before or after rib fracture and evaluated by histological staining and micro-CT. Bone graft exchange models were created in WT and MCP-1−/− mice and were evaluated by histological staining and micro-CT.

Results

MCP-1 and MCP-3 expression in the early phase of fracture healing were up-regulated, and high levels of MCP-1 and MCP-3 protein expression observed in the periosteum and endosteum in the same period. MCP-1, but not MCP-3, increased migration of mBMSCs in a dose-dependent manner. Fracture healing in MCP-1−/− and CCR2−/− mice was delayed compared with WT mice on day 21. Administration of RS102895 in the early, but not in the late phase, caused delayed fracture healing. Transplantation of WT-derived graft into host MCP-1−/− mice significantly increased new bone formation in the bone graft exchange models. Furthermore, marked induction of MCP-1 expression in the periosteum and endosteum was observed around the WT-derived graft in the host MCP-1−/− mouse. Conversely, transplantation of MCP-1−/− mouse-derived grafts into host WT mice markedly decreased new bone formation.

Conclusions

MCP-1/CCR2 signaling in the periosteum and endosteum is essential for the recruitment of mesenchymal progenitor cells in the early phase of fracture healing.  相似文献   

3.
4.
Bones'' strength is achieved and maintained through adaptation to load bearing. The role of the protein kinase PKCα in this process has not been previously reported. However, we observed a phenotype in the long bones of Prkca−/− female but not male mice, in which bone tissue progressively invades the medullary cavity in the mid-diaphysis. This bone deposition progresses with age and is prevented by disuse but unaffected by ovariectomy. Castration of male Prkca−/− but not WT mice results in the formation of small amounts of intramedullary bone. Osteoblast differentiation markers and Wnt target gene expression were up-regulated in osteoblast-like cells derived from cortical bone of female Prkca−/− mice compared with WT. Additionally, although osteoblastic cells derived from WT proliferate following exposure to estradiol or mechanical strain, those from Prkca−/− mice do not. Female Prkca−/− mice develop splenomegaly and reduced marrow GBA1 expression reminiscent of Gaucher disease, in which PKC involvement has been suggested previously. From these data, we infer that in female mice, PKCα normally serves to prevent endosteal bone formation stimulated by load bearing. This phenotype appears to be suppressed by testicular hormones in male Prkca−/− mice. Within osteoblastic cells, PKCα enhances proliferation and suppresses differentiation, and this regulation involves the Wnt pathway. These findings implicate PKCα as a target gene for therapeutic approaches in low bone mass conditions.  相似文献   

5.

Objective

MCPIP1 is a newly identified protein that profoundly impacts immunity and inflammation. We aim to test if MCPIP1 deficiency in hematopoietic cells results in systemic inflammation and accelerates atherogenesis in mice.

Approach and Results

After lethally irradiated, LDLR−/− mice were transplanted with bone marrow cells from either wild-type or MCPIP1−/− mice. These chimeric mice were fed a western-type diet for 7 weeks. We found that bone marrow MCPIP1−/− mice displayed a phenotype similar to that of whole body MCPIP1−/− mice, with severe systemic and multi-organ inflammation. However, MCPIP1−/− bone marrow recipients developed >10-fold less atherosclerotic lesions in the proximal aorta than WT bone marrow recipients, and essentially no lesions in en face aorta. The diminishment in atherosclerosis in bone marrow MCPIP1−/− mice may be partially attributed to the slight decrease in their plasma lipids. Flow cytometric analysis of splenocytes showed that bone marrow MCPIP1−/− mice contained reduced numbers of T cells and B cells, but increased numbers of regulatory T cells, Th17 cells, CD11b+/Gr1+ cells and CD11b+/Ly6Clow cells. This overall anti-atherogenic leukocyte profile may also contribute to the reduced atherogenesis. We also examined the cholesterol efflux capability of MCPIP1 deficient macrophages, and found that MCPIP1deficiency increased cholesterol efflux to apoAI and HDL, due to increased protein levels of ABCA1 and ABCG1.

Conclusions

Hematopoietic deficiency of MCPIP1 resulted in severe systemic and multi-organ inflammation but paradoxically diminished atherogenesis in mice. The reduced atheroegensis may be explained by the decreased plasma cholesterol levels, the anti-atherogenic leukocyte profile, as well as enhanced cholesterol efflux capability. This study suggests that, while atherosclerosis is a chronic inflammatory disease, the mechanisms underlying atherogenesis-associated inflammation in arterial wall versus the inflammation in solid organs may be substantially different.  相似文献   

6.

Introduction

Ligament and meniscal damage can cause joint disease. Arthritic joints contain increased amounts of epidermal growth factor receptor (EGFR) protein, and polymorphisms in EGFR are associated with arthritis risk. The role of endogenous EGFR regulation during joint disease due to ligament and meniscal trauma is unknown. Mitogen-inducible gene 6 (MIG-6) can reduce EGFR phosphorylation and downstream signaling. We examined the effect of EGFR modulation by MIG-6 on joint disease development after ligament and meniscus injury.

Methods

Knee ligament transection and meniscus removal were performed surgically on mice homozygous for a global inactivating mutation in MIG-6 (Mig-6−/−) and in wild-type (WT) animals.

Results

Two weeks after surgery, Mig-6−/−mice had bone erosion as well as greater fibrous tissue area and serum RANKL concentration than WT mice. Four weeks after surgery, Mig-6−/−mice had less cartilage and increased cell proliferation relative to contralateral control and WT knees. Increased apoptotic cells and growth outside the articulating region occurred in Mig-6−/−mice. Tibia trabecular bone mineral density (BMD) and the number of trabeculae were lower in surgically treated knees relative to the respective control knees for both groups. BMD, as well as trabecular thickness and number, were lower in surgically treated knees from Mig-6−/−mice relative to WT surgically treated knees. Phosphorylated EGFR staining in surgically treated knees decreased for WT mice and increased for Mig-6−/−mice. Fewer inflammatory cells were present in the knees of WT mice.

Conclusion

Mig-6−/−mice have rapid and increased joint damage after ligament and meniscal trauma. Mig-6 modification could lessen degenerative disease development after this type of injury.  相似文献   

7.
A major medical challenge in the elderly is osteoporosis and the high risk of fracture. Telomere dysfunction is a cause of cellular senescence and telomere shortening, which occurs with age in cells from most human tissues, including bone. Telomere defects contribute to the pathogenesis of two progeroid disorders characterized by premature osteoporosis, Werner syndrome and dyskeratosis congenital. It is hypothesized that telomere shortening contributes to bone aging. We evaluated the skeletal phenotypes of mice with disrupted telomere maintenance mechanisms as models for human bone aging, including mutants in Werner helicase (Wrn−/−), telomerase (Terc−/−) and Wrn−/−Terc−/− double mutants. Compared with young wild-type (WT) mice, micro-computerized tomography analysis revealed that young Terc−/− and Wrn−/−Terc−/− mice have decreased trabecular bone volume, trabecular number and trabecular thickness, as well as increased trabecular spacing. In cortical bone, young Terc−/− and Wrn−/−Terc−/− mice have increased cortical thinning, and increased porosity relative to age-matched WT mice. These trabecular and cortical changes were accelerated with age in Terc−/− and Wrn−/−Terc−/− mice compared with older WT mice. Histological quantification of osteoblasts in aged mice showed a similar number of osteoblasts in all genotypes; however, significant decreases in osteoid, mineralization surface, mineral apposition rate and bone formation rate in older Terc−/− and Wrn−/−Terc−/− bone suggest that osteoblast dysfunction is a prominent feature of precocious aging in these mice. Except in the Wrn−/− single mutant, osteoclast number did not increase in any genotype. Significant alterations in mechanical parameters (structure model index, degree of anistrophy and moment of inertia) of the Terc−/− and Wrn−/−Terc−/− femurs compared with WT mice were also observed. Young Wrn−/−Terc−/− mice had a statistically significant increase in bone-marrow fat content compared with young WT mice, which remained elevated in aged double mutants. Taken together, our results suggest that Terc−/− and Wrn−/−Terc−/− mutants recapitulate the human bone aging phenotype and are useful models for studying age-related osteoporosis.KEY WORDS: Aging, Bone histomorphometry, Osteoporosis  相似文献   

8.
Interleukin-6 (IL-6) is a pleiotropic cytokine that affects various functions, including tumor development. Although the importance of IL-6 in gastric cancer has been documented in experimental and clinical studies, the mechanism by which IL-6 promotes gastric cancer remains unclear. In this study, we investigated the role of IL-6 in the epithelial–stromal interaction in gastric tumorigenesis. Immunohistochemical analysis of human gastritis, gastric adenoma, and gastric cancer tissues revealed that IL-6 was frequently detected in the stroma. IL-6–positive cells in the stroma showed positive staining for the fibroblast marker α-smooth muscle actin, suggesting that stromal fibroblasts produce IL-6. We compared IL-6 knockout (IL-6−/−) mice with wild-type (WT) mice in a model of gastric tumorigenesis induced by the chemical carcinogen N-methyl-N-nitrosourea. The stromal fibroblasts expressed IL-6 in tumors from WT mice. Gastric tumorigenesis was attenuated in IL-6−/− mice, compared with WT mice. Impaired tumor development in IL-6−/− mice was correlated with the decreased activation of STAT3, a factor associated with gastric cancer cell proliferation. In vitro, when gastric cancer cell line was co-cultured with primary human gastric fibroblast, STAT3–related genes including COX-2 and iNOS were induced in gastric cancer cells and this response was attenuated with neutralizing anti-IL-6 receptor antibody. IL-6 production from fibroblasts was increased when fibroblasts were cultured in the presence of gastric cancer cell–conditioned media. IL-6 production from fibroblasts was suppressed by an interleukin-1 (IL-1) receptor antagonist and siRNA inhibition of IL-1α in the fibroblasts. IL-1α mRNA and protein were increased in fibroblast lysate, suggesting that cell-associated IL-1α in fibroblasts may be involved. Our results suggest the importance of IL-6 mediated stromal-epithelial cell interaction in gastric tumorigenesis.  相似文献   

9.
Toll-like receptors (TLRs) and RNA helicases (RLHs) are important cell sensors involved in the immunological control of viral infections through production of type I interferon (IFN). The impact of a deficiency in the TRIF and IPS-1 adaptor proteins, respectively, implicated in TLR3 and RLH signaling pathways, was investigated during herpes simplex virus 1 (HSV-1) encephalitis. TRIF−/−, IPS-1−/−, and C57BL/6 wild-type (WT) mice were infected intranasally with 7.5 × 105 PFU of HSV-1. Mice were monitored for neurological signs and survival over 20 days. Groups of mice were sacrificed on days 3, 5, 7, 9, and 11 postinfection for determination of brain viral replication by quantitative PCR (qPCR), plaque assay, and immunohistochemistry and for alpha/beta interferon (IFN-α/β) levels and phosphorylation of interferon regulatory factors 3 and 7 (IRF-3 and -7) in brain homogenates by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. TRIF−/− and IPS-1−/− mice had higher mortality rates than WT mice (P = 0.02 and P = 0.09, respectively). Viral antigens were more disseminated throughout the brain, correlating with a significant increase in brain viral load for TRIF−/− (days 5 to 9) and IPS-1−/− (days 7 and 9) mice compared to results for the WT. IFN-β production was reduced in brain homogenates of TRIF−/− and IPS-1−/− mice on day 5 compared to results for the WT, whereas IFN-α levels were increased on day 7 in TRIF−/− mice. Phosphorylation levels of IRF-3 and IRF-7 were decreased in TRIF−/− and IPS-1−/− mice, respectively. These data suggest that both the TRIF and IPS-1 signaling pathways are important for the control of HSV replication in the brain and survival through IFN-β production.  相似文献   

10.

Background

Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E2. The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract.

Methodology/Principal Findings

Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4−/− mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4−/− mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4−/− mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E2 in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4−/− mice provided little evidence of stromal-epithelial interactions in the response to LPS.

Conclusions/Significance

The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.  相似文献   

11.
12.
Endocannabinoids are lipid signaling molecules that act via G-coupled receptors, CB1 and CB2. The endocannabinoid system is capable of activation of distinct signaling pathways on demand in response to pathogenic events or stimuli, hereby enhancing cell survival and promoting tissue repair. However, the role of endocannabinoids in hematopoietic stem and progenitor cells (HSPCs) and their interaction with hematopoietic stem cells (HSC) niches is not known. HSPCs are maintained in the quiescent state in bone marrow (BM) niches by intrinsic and extrinsic signaling. We report that HSPCs express the CB1 receptors and that BM stromal cells secrete endocannabinoids, anandamide (AEA) (35 pg/107 cells), and 2-AG (75.2 ng/107 cells). In response to the endotoxin lipopolysaccharide (LPS), elevated levels of AEA (75.6 pg/107 cells) and 2-AG (98.8 ng/107 cells) were secreted from BM stromal cells, resulting in migration and trafficking of HSPCs from the BM niches to the peripheral blood. Furthermore, administration of exogenous cannabinoid CB1 agonists in vivo induced chemotaxis, migration, and mobilization of human and murine HSPCs. Cannabinoid receptor knock-out mice Cnr1−/− showed a decrease in side population (SP) cells, whereas fatty acid amide hydrolase (FAAH)−/− mice, which have elevated levels of AEA, yielded increased colony formation as compared with WT mice. In addition, G-CSF-induced mobilization in vivo was modulated by endocannabinoids and was inhibited by specific cannabinoid antagonists as well as impaired in cannabinoid receptor knock-out mice Cnr1−/−, as compared with WT mice. Thus, we propose a novel function of the endocannabinoid system, as a regulator of HSPC interactions with their BM niches, where endocannabinoids are expressed in HSC niches and under stress conditions, endocannabinoid expression levels are enhanced to induce HSPC migration for proper hematopoiesis.  相似文献   

13.
To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2−/−) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2+-ATPase) regulate Ca2+ fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2−/− cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes higher levels of myeloproliferation and migration.  相似文献   

14.
AMP-activated protein kinase α1 knockout (prkaa1−/−) mice manifest splenomegaly and anemia. The underlying molecular mechanisms, however, remain to be established. In this study, we tested the hypothesis that defective autophagy-dependent mitochondrial clearance in prkaa1−/− mice exacerbates oxidative stress, thereby enhancing erythrocyte destruction. The levels of ULK1 phosphorylation, autophagical flux, mitochondrial contents, and reactive oxygen species (ROS) were examined in human erythroleukemia cell line, K562 cells, as well as prkaa1−/− mouse embryonic fibroblasts and erythrocytes. Deletion of Prkaa1 resulted in the inhibition of ULK1 phosphorylation at Ser555, prevented the formation of ULK1 and BECN1- PtdIns3K complexes, and reduced autophagy capacity. The suppression of autophagy was associated with enhanced damaged mitochondrial accumulation and ROS production. Compared with wild-type (WT) mice, prkaa1−/− mice exhibited a shortened erythrocyte life span, hemolytic destruction of erythrocytes, splenomegaly, and anemia, all of which were alleviated by the administration of either rapamycin to activate autophagy or Mito-tempol, a mitochondria-targeted antioxidant, to scavenge mitochondrial ROS. Furthermore, transplantation of WT bone marrow into prkaa1−/− mice restored mitochondrial removal, reduced intracellular ROS levels, and normalized hematologic parameters and spleen size. Conversely, transplantation of prkaa1 −/− bone marrow into WT mice recapitulated the prkaa1−/− mouse phenotypes. We conclude that PRKAA1-dependent autophagy-mediated clearance of damaged mitochondria is required for erythrocyte maturation and homeostasis.  相似文献   

15.
Our recent studies indicate that the transient receptor potential vanilloid type 1 (TRPV1) channel may act as a potential regulator of monocyte/macrophage recruitment to reduce renal injury in salt-sensitive hypertension. This study tests the hypothesis that deletion of TRPV1 exaggerates salt-sensitive hypertension-induced renal injury due to enhanced inflammatory responses via monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2)-dependent pathways. Wild type (WT) and TRPV1-null mutant (TRPV1−/−) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for four weeks with or without the selective CCR2 antagonist, RS504393. DOCA-salt treatment increased systolic blood pressure (SBP) to the same degree in both strains, but increased urinary excretion of albumin and 8-isoprostane and decreased creatinine clearance with greater magnitude in TRPV1−/− mice compared to WT mice. DOCA-salt treatment also caused renal glomerulosclerosis, tubulointerstitial injury, collagen deposition, monocyte/macrophage infiltration, proinflammatory cytokine and chemokine production, and NF-κB activation in greater degree in TRPV1−/− mice compared to WT mice. Blockade of the CCR2 with RS504393 (4 mg/kg/day) had no effect on SBP in DOCA-salt-treated WT or TRPV1−/− mice compared to their respective controls. However, treatment with RS504393 ameliorated renal dysfunction and morphological damage, and prevented the increase in monocyte/macrophage infiltration, cytokine/chemokine production, and NF-κB activity in both DOCA-salt hypertensive strains with a greater effect in DOCA-salt-treated TRPV1−/− mice compared to DOCA-salt-treated WT mice. No differences in CCR2 protein expression in kidney were found between DOCA-salt-treated WT and TRPV1−/− mice with or without RS504393 treatment. Our studies for the first time indicate that deletion of TRPV1 aggravated renal injury in salt-sensitive hypertension via enhancing MCP-1/CCR2 signaling-dependent inflammatory responses.  相似文献   

16.
17.
18.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.  相似文献   

19.
A tightly controlled balance between hematopoietic stem and progenitor cell compartments is required to maintain normal blood cell homeostasis throughout life, and this balance is regulated by intrinsic and extrinsic cellular factors. Cav-1 is a 22-kDa protein that is located in plasma membrane invaginations and is implicated in regulating neural stem cell and embryonic stem cell proliferation. However, the role of Cav-1 in hematopoietic stem cell (HSC) function is largely unknown. In this study, we used Cav-1−/− mice to investigate the role of Cav-1 in HSCs function during aging. The results showed that Cav-1−/− mice displayed a decreased percentage of B cells and an increased percentage of M cells in the bone marrow and peripheral blood, and these changes were due to an increased number of HSCs. FACS analysis showed that the numbers of LinSca1+c-kit+ cells (LSKs), long-term HSCs (LT-HSCs), short-term HSCs and multipotent progenitors were increased in Cav-1−/− mice compared with Cav-1+/+ mice, and this increase became more pronounced with aging. An in vitro clonogenic assay showed that LT-HSCs from Cav-1−/− mice had reduced ability to self-renew. Consistently, an in vivo competitive transplantation assay showed that Cav-1−/− mice failed to reconstitute hematopoiesis. Moreover, a Cav-1 deletion disrupted the quiescence of LSKs and promoted cell cycle progression through G2/M phase. In addition, we found that Cav-1 deletion impaired the ability of HSCs to differentiate into mature blood cells. Taken together, these data suggest that Cav-1-deficient cells impaired HSCs quiescence and induced environmental alterations, which limited HSCs self-renewal and function.  相似文献   

20.
Wiskott-Aldrich Syndrome protein (WASP) is a key regulator of the actin cytoskeleton in hematopoietic cells. Defective expression of WASP leads to multiple abnormalities in different hematopoietic cells. Despite severe impairment of T cell function, WAS patients exhibit a high prevalence of autoimmune disorders. We attempted to induce EAE, an animal model of organ-specific autoimmunity affecting the CNS that mimics human MS, in Was−/− mice. We describe here that Was−/− mice are markedly resistant against EAE, showing lower incidence and milder score, reduced CNS inflammation and demyelination as compared to WT mice. Microglia was only poorly activated in Was−/− mice. Antigen-induced T-cell proliferation, Th-1 and -17 cytokine production and integrin-dependent adhesion were increased in Was−/− mice. However, adoptive transfer of MOG-activated T cells from Was−/− mice in WT mice failed to induce EAE. Was−/− mice were resistant against EAE also when induced by adoptive transfer of MOG-activated T cells from WT mice. Was+/− heterozygous mice developed an intermediate clinical phenotype between WT and Was−/− mice, and they displayed a mixed population of WASP-positive and -negative T cells in the periphery but not in their CNS parenchyma, where the large majority of inflammatory cells expressed WASP. In conclusion, in absence of WASP, T-cell responses against a CNS autoantigen are increased, but the ability of autoreactive T cells to induce CNS autoimmunity is impaired, most probably because of an inefficient T-cell transmigration into the CNS and defective CNS resident microglial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号