首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
Five toxigenic isolates of Fusarium species were tested for the production of zearalenone, moniliformin and trichothecenes (deoxynivalenol, 15-acetyldeoxynivalenol, T-2, HT-2 and neosolaniol) when grown on solid sugar beet slices in the laboratory for thirty days. The isolates were also grown on a solid rice medium for comparison. High zearalenone and trichothecene-producing isolates originally obtained from corn and corn-based feedstuff were compared with isolates obtained from sugar beets. One moniliformin-producing isolate from wheat was included in the study. With the exception of moniliformin, all toxins were produced on both substrates; however, the rice medium yielded the greater concentrations except for HT-2 which was produced on sugar beets in equal or greater concentrations. Zearalenone production on rice reached 729–1943 gmg/g whereas on sugar beet it reached 72–193 gmg/g. The moniliformin-producing isolate grew well on both substrates; however, moniliformin was produced only on the rice substrate. This study demonstrates for the first time that Fusarium species can produce both zearalenone and the trichothecenes on a sugar beet substrate.  相似文献   

2.
Wheat for human consumption (140 samples) was collected after harvest from all regions of Bulgaria. The 1995 crop year was characterized by heavy rainfall in the spring and summer months. The internal mycoflora of wheat samples was dominated by Fusarium spp. and Alternaria spp., and storage fungi were rarely present. The samples were analysed for contamination with Fusarium mycotoxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), T-2 Toxin (T-2), diacetoxyscirpenol (DAS), and zearalenone (ZEA), using enzyme immunoassay methods. DON and ZEA were the predominant toxins, with a contamination frequency of 67% and 69%, respectively. The average levels of these toxins in positive samples were 180 g/kg (DON) and 17 g/kg (ZEA), maximum concentrations were 1800 g kg–1 and 120 g kg–1, respectively. Acetyl derivatives of DON, namely 3-AcDON and 15-AcDON, were found in 2.1 % and 0.7% of the samples, at at maximum level of about 100 g kg–1. Only one sample was positive for T-2 (55 g/kg), DAS was not detected. This is the first report about the natural occurrence of a range of Fusarium mycotoxins in wheat for human consumption in Bulgaria.Abbreviations 3-AcDON 3-acetyldeoxynivalenol - 15-AcDON 15-acetyldeoxynivalenol - DAS diacetoxyscirpenol - DON deoxynivalenol - EIA enzyme immunoassay - T-2 T-2 toxin - ZEA zearalenone  相似文献   

3.
A large number of isolates from the Fusarium graminearum clade representing all regions in China with a known history of Fusarium head blight (FHB) epidemics in wheat were assayed using PCR to ascertain their trichothecene mycotoxin chemotypes and associated phylogenetic species and geographical distribution. Of the 299 isolates assayed, 231 are from F. asiaticum species lineage 6, which produce deoxynivalenol and 3-acetyldeoxynivalenol (3-AcDON); deoxynivalenol and 15-acetyldeoxynivalenol (15-AcDON); and nivalenol and 4-acetylnivalenol (NIV) mycotoxins, with 3-AcDON being the predominant chemotype. Ninety-five percent of this species originated from the warmer regions where the annual average temperatures were above 15 °C, based on the climate data of 30 y during 1970–1999. However, 68 isolates within F. graminearum species lineage 7 consisted only of 15-AcDON producers, 59 % of which were from the cooler regions where the annual average temperatures were 15 °C or lower. Identification of a new subpopulation of 15-AcDON producers revealed a molecular distinction between F. graminearum and F. asiaticum that produce 15-AcDON. An 11-bp repeat is present in F. graminearum within their Tri7 gene sequences but is absent in F. asiaticum, which could be directly used for differentiating the two phylogenetic species of the F. graminearum clade.  相似文献   

4.
Sheep grazing in Western Australia can partially or completely refuse to consume annual Medicago pods contaminated with a number of different Fusarium species. Many Fusarium species are known to produce trichothecenes as part of their array of toxigenic secondary metabolites, which are known to cause feed refusal in animals. This study reports the identity of Fusarium species using species-specific PCR primers and a characterization of the toxigenic secondary metabolites produced by 24 Fusarium isolates associated with annual legume-based pastures and particularly those associated with sheep feed refusal disorders in Western Australia. Purification of the fungal extracts was facilitated by a bioassay-guided fractionation using brine shrimp. A number of trichothecenes (3-acetyldeoxynivalenol, deoxynivalenol, fusarenon-X, monoacetoxyscirpenols, diacetoxyscirpenol, scirpentriol, HT-2 toxin and T-2 toxin), enniatins (A, A1, B, and B1), chlamydosporol and zearalenone were identified using GC/MS and/or NMR spectroscopy. Some of the crude extracts and fractions showed significant activity against brine shrimp at concentrations as low as 5 μg ml-1, and are likely to be involved in the sheep feed refusal disorders. This is the first report of chlamydosporol production by confirmed Fusarium spp.; of the incidence of F. brachygibbosum and F. venenatum in Australia and of F. tricinctum in Western Australia; and of mycotoxin production by Fusarium species from Western Australia.  相似文献   

5.
Liquid cultures of 200 Fusarium isolates selected to represent the most common species found in autumn pasture (70 isolates) and in grain (130 isolates) grown in New Zealand were analysed for trichothecenes and related compounds. Production of butenolide, cyclonerodiol derivatives and culmorins was also measured. The principal trichothecenes produced were derivatives of either nivalenol (NIV), deoxynivalenol (DON) or scirpentriol (Sctol), in order of frequency. The principal trichothecene producing species were F. crookwellense, F. culmorum and F. graminearum. Isolates of the first two species were predominantly NIV-chemotypes with one or two isolates respectively as Sctol-chemotypes. F. graminearum showed equal quantities of NIV- and DON-chemotypes, with the DON-chemotypes producing primarily 15-acetyldeoxynivalenol (15-ADON).  相似文献   

6.
Seo JA  Kim JC  Lee DH  Lee YW 《Mycopathologia》1996,134(1):31-37
A total of 214 Fusarium graminearum isolates were obtained from corn and barley which were collected from Kangwon province and the southern part of Korea, respectively, and were tested for 8-ketotrichothecenes and zearalenone (ZEA) production on rice grains. The incidences of trichothecene production by 105 isolates of F. graminearum from corn were 59.0% for deoxynivalenol (DON), 37.1% for 15-acetyldeoxynivalenol(15-ADON), 13.3% for 3-acetyldeoxynivalenol (3-ADON), 7.6% for 3,15-diacetyldeoxynivalenol (3,15-DADON), 20.0% for nivalenol (NIV), 6.7% for 4-acetylnivalenol (4-ANIV), and 1.0% for 4,15-diacetylnivalenol (4,15-DANIV). DON chemotypes frequently produced 15-ADON as the major isomer rather than 3-ADON and 9 of the 61 DON chemotypes produced low levels of NIV. On the other hand, the incidences of trichothecene production of 109 isolates by F. graminearum from barley were 24.8% for DON, 72.5% for NIV, 62.4% for 4-ANIV, and 10.1% for 4,15-DANIV. Of these isolates, 78 were NIV chemotypes and only one isolate produced DON and 3-ADON as major toxins. In addition, 26 of the 78 NIV chemotypes produced low levels of DON. ZEA was frequently produced by the trichothecene-producing isolates and the incidences of ZEA were 51.4% and 31.2% for the isolates from corn and barley, respectively. There was a great regional difference in trichothecene production by F. graminearum isolates between corn- and barley-producing areas in Korea.  相似文献   

7.
Ayurvedic medicine, which uses decoctions made of medicinal plants, is used to cure diseases in many Asian countries including Sri Lanka. Although proper storage facilities for medicinal plants are unavailable in Sri Lanka, neither the potential for growth of toxigenic fungi nor their ability to produce mycotoxins in stored medicinal plants has been investigated. We isolated three Fusarium species, F. culmorum, F. acuminatum and F. graminearum from the medicinal plant Tribulus terrestris. Culture extracts of the 3 Fusarium spp. were cytotoxic to mammalian cell lines BHK-21 and HEP-2. Three toxic metabolites produced by Fusarium spp; T-2 toxin, zearalenone, and diacetoxyscirpenol were also cytotoxic to the same mammalian cell lines. The 3 Fusarium spp. grown on rice media produced zearalenone. Plant material destined for medicinal use should be stored under suitable conditions to prevent growth of naturally occurring toxigenic fungi prior to its use.  相似文献   

8.
Preservation of fungi in water (Castellani): 20 years   总被引:1,自引:0,他引:1  
Sixty-two isolates of Fusarium were obtained from pasture grass and soil from various areas of New Zealand and identified as F. anthophilum [2], F. avenaceum [17], F. crookwellense [8], F. culmorum [4], F. graminearum [1], F. nivale [3], F. oxysporum [3], F. sambucinum [17], F. semitectum [1], F. tricinctum [1] and an unidentified Fusarium spp. [5]. These isolates were grown on autoclaved rice and tested for toxicity to rats in feeding tests. Eighty two percent of the isolates were toxic, of which twenty-four percent were severely toxic and caused hemorrhages of stomach and intestine, hematuria, and finally death. Cultures of the most toxic isolates contained 0.1 to 104 ppm of deoxynivalenol, 0.7 and 7 ppm of 15- and 3-acetyldeoxynivalenol respectively, 0.2 to 4 ppm of fusarenon- X, 11 to 1021 ppm zearalenone, 40 to 272 ppm of the hemorrhagic factor (wortmannin), 2,100 to 7,200 ppm of moniliformin, 565 ppm of the cytotoxic factor (HM-8) and enniatin in substantial concentrations. F. sambucinum is reported as a moniliformin producer for the first time.  相似文献   

9.
A mycological survey was carried out on wheat heads from the main production area of Argentina. The isolation frequency and relative density of species from genus Fusarium and dematiaceous fungi were calculated. F graminearum was the predominant Fusarium species; similar to that observed in the USA and Canada. An analysis of deoxynivalenol (DON) natural contamination also was performed on a limited number (44) of samples. DON contamination levels in positive samples ranged from 0.2 to 30 ppm. A stepwise regression procedure showed that, among the species analysed, F. graminearum relative density was related to the DON contamination level and that other prevalent fungi did not influence or modify that relationship.  相似文献   

10.
An isolated occurrence of Fusarium head blight (FHB) of wheat was detected in the south-west region of Western Australia during the 2003 harvest season. The molecular identity of 23 isolates of Fusarium spp. collected from this region during the FHB outbreak confirmed the associated pathogens to be F. graminearum, F. acuminatum or F. tricinctum. Moreover, the toxicity of their crude extracts from Czapek-Dox liquid broth and millet seed cultures to brine shrimp (Artemia franciscana) was associated with high mortality levels. The main mycotoxins detected were type B trichothecenes (deoxynivalenol and 3-acetyldeoxynivalenol), enniatins, chlamydosporol and zearalenone. This study is the first report on the mycotoxin profiles of Fusarium spp. associated with FHB of wheat in Western Australia. This study highlights the need for monitoring not just for the presence of the specific Fusarium spp. present in any affected grain but also for their potential mycotoxin and other toxic secondary metabolites.  相似文献   

11.
In the present report, a total of 75 Fusarium spp isolates (35 of the Gibberella fujikuroi species complex, 26 of F. oxysporum, 7 of F. graminearum, 5 of F. culmorum, 1 of F. cerealis, and 1 of F. poae) from different hosts were characterized morphologically, physiologically and genetically. Morphological characterization was performed according to macroscopic and microscopic aspects. Physiological characterization was based on their ability to produce fumonisin B1 (FB1), fumonisin B2 (FB2), zearalenone (ZEA) and type B trichothecenes (deoxynivalenol, nivalenol and 3-acetyldeoxynivalenol). FB1, FB2, and ZEA were determined by liquid chromatography and trichothecenes by gas chromatography. Molecular characterization of isolates was carried out using an optimized and simple method for isolation of DNA from filamentous fungi and polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) of the intergenic spacer region (IGS) of the rDNA. The results indicated that G. fujikuroi complex isolates can be␣divided into low and high fumonisin producers. The haplotypes obtained with HhaI, EcoRI, AluI, PstI and XhoI enzymes provided very characteristic groupings of G. fujikuroi isolates as a function of host type and fumonisin producing capacity. F. graminearum, F. culmorum and F. cerealis isolates were high ZEA␣and type B trichothecene producers, while F. oxysporum and the G. fujikuroi complex isolates did not show this ability. The haplotypes obtained with CfoI, AluI, HapII, XhoI, EcoRI and PstI enzymes permitted to discern these five Fusarium species and G. fujikuroi complex isolates but the restriction patterns of the IGS region did not show any relationship with the geographic origin of isolates.  相似文献   

12.
A survey for the natural occurrence of Fusarium mycotoxins, deoxynivalenol (DON), nivalenol (NIV) and zearalenone (ZEN), in Dutch cereals (totaling 29 samples) harvested in 1984/1985, showed that 90%, 79% and 62% of samples were contaminated with DON, NIV and ZEN, respectively. Average contents (ng/g) in the total of positive samples were 221 (DON), 123 (NIV) and 61 (ZEN). Among the cereals examined, the highest concentrations (ng/g) was 3198 (DON), 1875 (NIV) and 677 (ZEN) in a yellow corn sample for animal feed. The results of this survey show that Dutch cereals were relatively significantly contaminated with Fusarium mycotoxins.  相似文献   

13.
Three wheat samples collected in 1987 in Central Poland and naturally infected withFusarium spp were analyzed for the presence ofFusarium spp andFusarium toxins. Heads were separated into three fractions: kernels with visibleFusarium damage, healthy looking kernels, and chaff + rachis. The samples contained deoxynivalenol (2.0 – 40.0μg/g), nivalenol (O.O1μg/g), 4,7-dideoxynivalenol (0.10 – 0.15μg/g). 15-acetyldeoxynivalenol (0.10–2.00 μg/g), 3-acetyldeoxynivalenol (O/1Oμg/g), and zearalenone (0.01–2.00μg/g). This is the first report about 15 - acetyldeoxynivalenol in European wheat and the co-occurrence of 3 - acetyldeoxynivalenol and 15-acetyldeoxynivalenol in the same sample of contaminated cereals.  相似文献   

14.
Phyllosticta tabernaemontanae, a leaf spot fungus isolated from the diseased leaves of Wrightia tinctoria, showed the production of taxol, an anticancer drug, on modified liquid medium (MID) and potato dextrose broth (PDB) medium in culture for the first time. The presence of taxol was confirmed by spectroscopic and chromatographic methods of analysis. The amount of taxol produced by this fungus was quantified using high performance liquid chromatography (HPLC). The maximum amount of taxol production was recorded in the fungus grown on MID medium (461 μg/L) followed by PDB medium (150 μg/L). The production rate was increased to 9.2 × 103 fold than that found in the culture broth of earlier reported fungus, Taxomyces andreanae. The results designate that P. tabernaemontanae is an excellent candidate for taxol production. The fungal taxol extracted also showed a strong cytotoxic activity in the in vitro culture of tested human cancer cells by apoptotic assay.  相似文献   

15.
Fusarium head blight (FHB) is a devastating disease of small grain cereal crops caused by the necrotrophic pathogen Fusarium graminearum and Fusarium culmorum. These fungi produce the trichothecene mycotoxin deoxynivalenol (DON) and its derivatives, which enhance the disease development during their interactions with host plants. For the self-protection, the trichothecene producer Fusarium species have Tri101 encoding trichothecene 3-O-acetyltransferase. Although transgenic expression of Tri101 significantly reduced inhibitory action of DON on tobacco plants, there are several conflicting observations regarding the phytotoxicity of 3-acetyldeoxynivalenol (3-ADON) to cereal plants; 3-ADON was reported to be highly phytotoxic to wheat at low concentrations. To examine whether cereal plants show sufficient resistance to 3-ADON, we generated transgenic rice plants with stable expression and inheritance of Tri101. While root growth of wild-type rice plants was severely inhibited by DON in the medium, this fungal toxin was not phytotoxic to the transgenic lines that showed trichothecene 3-O-acetylation activity. This is the first report demonstrating the DON acetylase activity and DON-resistant phenotype of cereal plants expressing the fungal gene. S. Ohsato and T. Ochiai-Fukuda should be considered as joint first authors.  相似文献   

16.
This investigation aimed at the progression of the contamination of theFusarium toxins deoxynivalenol (DON) and zearalenone (ZON) within the fractions straw, glumes and spindles from non-inoculated andFusarium-inoculated wheat. TheFusarium head blight (FHB)-susceptible wheat cultivar Ritmo was cultivated after the pre-crop maize and artificially infected withFusarium culmorum. Samples of whole wheat plants were taken once a week from anthesis until harvest and fractionated into straw, glumes and spindles. Samples were examined for deoxynivalenol and zearalenone and quantitatively determined by high performance liquid chromatography (HPLC) with diode-array detection (DAD) and fluorescence detection, respectively. Additionally, the impact of theFusarium inoculation on the crude protein content was scrutinised. Differences in the formation of deoxynivalenol and zearalenone with respect to date and concentration are shown by this trial. Deoxynivalenol was produced in higher concentrations and at earlier stages, whereas zearalenone was formed later and in smaller amounts. Furthermore, a rise of the deoxynivalenol concentration up to a maximum during the growing season, followed by a sudden decline at later stages until harvest, was observed. ThisFusarium infection resulted in an increased crude protein content in all of the three fractions.  相似文献   

17.
Substances produced by Bacillus subtilis D1/2, a bacterium isolated from cultivated soil, were found to inhibit Fusarium graminearum. The antifungal activity of the bacterium was attributable to major extracellular lipopeptides isolated and identified as fengycins. Their synthesis was enhanced by casamino acids added to the culture medium. The unpurified cell-free spent medium elicited hemolysis with increasing concentration. Its application to field-cultivated maize and chamber-grown wheat suppressed gibberella ear rot and Fusarium head blight, respectively, when the plants were inoculated with F. graminearum macroconidia. The treatment of maize ears consistently arrested ear-rot development, while the treatment of wheat spikes retarded the progress of Fusarium head blight. Although the deoxynivalenol and ergosterol contents of treated maize kernels were halved, they remained high because of the experimental requirement to inoculate with a high number (1.5 × 104) of macroconidia. As a potential antifungal agent for controlling Fusarium diseases, B. subtilis D1/2 can be further developed as a useful component of integrated pest management. Handling Editor: Reijo Karjalainen.  相似文献   

18.
The response to delayed harvest of fungal and mycotoxin contamination of grain of the pearl millet hybrid HGM 100 was examined in 1992 and 1993. Samples of grain were assayed from seven plantings at locations near Tifton, Georgia, USA. Grain was harvested at 30, 40, and 50 days after anthesis and evaluated for infection byFusarium species andAspergillus flavus, and mycotoxin contamination. Mean isolation frequencies ofF. semitectum (35.6%) andF. chlamydosporum (17.2%) increased linearly with delayed harvest.Fusarium moniliforme andF. equisiti were infrequently isolated (<0.5%) and did not increase in the grain when harvest was delayed. Low mean concentrations of zearalenone (0.17 ppm), nivalenol (0.42 ppm), and deoxynivalenol (0.01 ppm) were detected but were not affected by delayed harvest. Isolation frequencies ofF. chlamydosporum andF. equiseti were correlated (P=0.07) with levels of nivalenol.Aspergillus flavus was not isolated from the grain, and aflatoxin concentrations averaged 1.9 ppb.  相似文献   

19.
Fusarium toxins are secondary metabolites produced byfungi of these genera in many commodities under certain conditions. A study was carried out to investigate the co-occurrence of zearalenone (ZEN), deoxynivalenol (DON) and fumonisins (FB1 and FB2) in 52 samples of mixed-feed for poultry contaminated withFusarium verticillioides. The zearalenone and deoxynivalenol were checked using immunoaffinity column and the extraction of fumonisin was performed by strong anion exchange (SAX) solid phase column. Detection and quantification were determined by high performance liquid chromatography (HPLC). The limit of detection was 5 μg/kg for ZEN, 100 μg/kg for DON and 50 and 100 μg/kg for FB1 and FB2 respectively.Fusarium toxins were detected in 20 samples. Sixteen samples were positive for ZEN (30.7%) presenting levels that ranged from 7.4 μg/kg to 61.4 μg/kg (mean=27.0 μg/kg). 13.5% of the samples presented contaminations of DON, with levels ranging from 100.0 μg/kg to 253 μg/kg (mean=l18.07 μg/kg). FB1 was detected in 19.2% of samples, with levels ranging from 50.0 μg/kg to 110.0 μg/kg (mean=73.6 μg/kg). FB2 was not detected in any sample. In positive samples simultaneously contamination with two or three mycotoxins were detected in 9 of them (17.3%).  相似文献   

20.
The gibberellins are one of the major groups of growth promoting hormones and are secondary metabolites of the fungus Fusarium moniliforme (Perfect stage: Gibberella fujikuroi). Sixteen strains of Fusarium from different geographical regions and different hosts were analysed for their ability to produce gibberellins (GA) and for genetic relatedness by random amplified polymorphic DNA (RAPD). Range of gibberellin production varied between 28.9 to 600.0 mg g-1 dry weight of mycelium in different strains of Fusarium. RAPD analysis showed completely different pattern between high, moderate and low producing strains. High producers formed nearly identical RAPD patterns, whereas the low and moderate producers gave heterologous amplification patterns. Since Fusarium pallidoroseum was in another group, it was possible to distinguish between different species of the genus Fusarium by RAPD. These investigations may find an application in the diagnosis of unknown Fusarium species and in distinguishing isolates of Gibberella fujikuroi within the section of Liseola. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号