首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
MOTIVATION: Membrane-bound proteins are a special class of proteins. The regions that insert into the cell-membrane have a profoundly different hydrophobicity pattern compared with soluble proteins. Multiple alignment techniques use scoring schemes tailored for sequences of soluble proteins and are therefore in principle not optimal to align membrane-bound proteins. RESULTS: Transmembrane (TM) regions in protein sequences can be reliably recognized using state-of-the-art sequence prediction techniques. Furthermore, membrane-specific scoring matrices are available. We have developed a new alignment method, called PRALINETM, which integrates these two features to enhance multiple sequence alignment. We tested our algorithm on the TM alignment benchmark set by Bahr et al. (2001), and showed that the quality of TM alignments can be significantly improved compared with the quality produced by a standard multiple alignment technique. The results clearly indicate that the incorporation of these new elements into current state-of-the-art alignment methods is crucial for optimizing the alignment of TM proteins. AVAILABILITY: A webserver is available at http://www.ibi.vu.nl/programs/pralinewww.  相似文献   

2.

Background

Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate.

Results

We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software.

Conclusions

SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.  相似文献   

3.
Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of ‘meta-methods’ that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys.  相似文献   

4.
Accurate tools for multiple sequence alignment (MSA) are essential for comparative studies of the function and structure of biological sequences. However, it is very challenging to develop a computationally efficient algorithm that can consistently predict accurate alignments for various types of sequence sets. In this article, we introduce PicXAA (Probabilistic Maximum Accuracy Alignment), a probabilistic non-progressive alignment algorithm that aims to find protein alignments with maximum expected accuracy. PicXAA greedily builds up the multiple alignment from sequence regions with high local similarities, thereby yielding an accurate global alignment that effectively grasps the local similarities among sequences. Evaluations on several widely used benchmark sets show that PicXAA constantly yields accurate alignment results on a wide range of reference sets, with especially remarkable improvements over other leading algorithms on sequence sets with local similarities. PicXAA source code is freely available at: http://www.ece.tamu.edu/∼bjyoon/picxaa/.  相似文献   

5.

Background

Programs based on hash tables and Burrows-Wheeler are very fast for mapping short reads to genomes but have low accuracy in the presence of mismatches and gaps. Such reads can be aligned accurately with the Smith-Waterman algorithm but it can take hours and days to map millions of reads even for bacteria genomes.

Results

We introduce a GPU program called MaxSSmap with the aim of achieving comparable accuracy to Smith-Waterman but with faster runtimes. Similar to most programs MaxSSmap identifies a local region of the genome followed by exact alignment. Instead of using hash tables or Burrows-Wheeler in the first part, MaxSSmap calculates maximum scoring subsequence score between the read and disjoint fragments of the genome in parallel on a GPU and selects the highest scoring fragment for exact alignment. We evaluate MaxSSmap’s accuracy and runtime when mapping simulated Illumina E.coli and human chromosome one reads of different lengths and 10% to 30% mismatches with gaps to the E.coli genome and human chromosome one. We also demonstrate applications on real data by mapping ancient horse DNA reads to modern genomes and unmapped paired reads from NA12878 in 1000 genomes.

Conclusions

We show that MaxSSmap attains comparable high accuracy and low error to fast Smith-Waterman programs yet has much lower runtimes. We show that MaxSSmap can map reads rejected by BWA and NextGenMap with high accuracy and low error much faster than if Smith-Waterman were used. On short read lengths of 36 and 51 both MaxSSmap and Smith-Waterman have lower accuracy compared to at higher lengths. On real data MaxSSmap produces many alignments with high score and mapping quality that are not given by NextGenMap and BWA. The MaxSSmap source code in CUDA and OpenCL is freely available from http://www.cs.njit.edu/usman/MaxSSmap.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-969) contains supplementary material, which is available to authorized users.  相似文献   

6.
Little DP 《PloS one》2011,6(8):e20552
For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple-sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple-sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment-free sequence identification algorithm--BRONX--that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple-sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user-defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini-barcode queries against a full-length barcode database). BRONX consistently produced better identifications at the genus-level for all query types.  相似文献   

7.
Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template‐defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile‐based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa . Proteins 2015; 83:411–427. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
A comparison of scoring functions for protein sequence profile alignment   总被引:3,自引:0,他引:3  
MOTIVATION: In recent years, several methods have been proposed for aligning two protein sequence profiles, with reported improvements in alignment accuracy and homolog discrimination versus sequence-sequence methods (e.g. BLAST) and profile-sequence methods (e.g. PSI-BLAST). Profile-profile alignment is also the iterated step in progressive multiple sequence alignment algorithms such as CLUSTALW. However, little is known about the relative performance of different profile-profile scoring functions. In this work, we evaluate the alignment accuracy of 23 different profile-profile scoring functions by comparing alignments of 488 pairs of sequences with identity < or =30% against structural alignments. We optimize parameters for all scoring functions on the same training set and use profiles of alignments from both PSI-BLAST and SAM-T99. Structural alignments are constructed from a consensus between the FSSP database and CE structural aligner. We compare the results with sequence-sequence and sequence-profile methods, including BLAST and PSI-BLAST. RESULTS: We find that profile-profile alignment gives an average improvement over our test set of typically 2-3% over profile-sequence alignment and approximately 40% over sequence-sequence alignment. No statistically significant difference is seen in the relative performance of most of the scoring functions tested. Significantly better results are obtained with profiles constructed from SAM-T99 alignments than from PSI-BLAST alignments. AVAILABILITY: Source code, reference alignments and more detailed results are freely available at http://phylogenomics.berkeley.edu/profilealignment/  相似文献   

9.
We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment—previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches—yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/.  相似文献   

10.
Pseudoknots are abundant in RNA structures. Many computational analyses require pseudoknot-free structures, which means that some of the base pairs in the knotted structure must be disregarded to obtain a nested structure. There is a surprising diversity of methods to perform this pseudoknot removal task, but these methods are often poorly described and studies can therefore be difficult to reproduce (in part, because different procedures may be intuitively obvious to different investigators). Here we provide a variety of algorithms for pseudoknot removal, some of which can incorporate sequence or alignment information in the removal process. We demonstrate that different methods lead to different results, which might affect structure-based analyses. This work thus provides a starting point for discussion of the extent to which these different methods recapture the underlying biological reality. We provide access to reference implementations through a web interface (at http://www.ibi.vu.nl/programs/k2nwww), and the source code is available in the PyCogent project.  相似文献   

11.
Evaluation measures of multiple sequence alignments.   总被引:1,自引:0,他引:1  
Multiple sequence alignments (MSAs) are frequently used in the study of families of protein sequences or DNA/RNA sequences. They are a fundamental tool for the understanding of the structure, functionality and, ultimately, the evolution of proteins. A new algorithm, the Circular Sum (CS) method, is presented for formally evaluating the quality of an MSA. It is based on the use of a solution to the Traveling Salesman Problem, which identifies a circular tour through an evolutionary tree connecting the sequences in a protein family. With this approach, the calculation of an evolutionary tree and the errors that it would introduce can be avoided altogether. The algorithm gives an upper bound, the best score that can possibly be achieved by any MSA for a given set of protein sequences. Alternatively, if presented with a specific MSA, the algorithm provides a formal score for the MSA, which serves as an absolute measure of the quality of the MSA. The CS measure yields a direct connection between an MSA and the associated evolutionary tree. The measure can be used as a tool for evaluating different methods for producing MSAs. A brief example of the last application is provided. Because it weights all evolutionary events on a tree identically, but does not require the reconstruction of a tree, the CS algorithm has advantages over the frequently used sum-of-pairs measures for scoring MSAs, which weight some evolutionary events more strongly than others. Compared to other weighted sum-of-pairs measures, it has the advantage that no evolutionary tree must be constructed, because we can find a circular tour without knowing the tree.  相似文献   

12.
MOTIVATION: Identification of residues that account for protein function specificity is crucial, not only for understanding the nature of functional specificity, but also for protein engineering experiments aimed at switching the specificity of an enzyme, regulator or transporter. Available algorithms generally use multiple sequence alignments to identify residue positions conserved within subfamilies but divergent in between. However, many biological examples show a much subtler picture than simple intra-group conservation versus inter-group divergence. RESULTS: We present multi-RELIEF, a novel approach for identifying specificity residues that is based on RELIEF, a state-of-the-art Machine-Learning technique for feature weighting. It estimates the expected 'local' functional specificity of residues from an alignment divided in multiple classes. Optionally, 3D structure information is exploited by increasing the weight of residues that have high-weight neighbors. Using ROC curves over a large body of experimental reference data, we show that (a) multi-RELIEF identifies specificity residues for the seven test sets used, (b) incorporating structural information improves prediction for specificity of interaction with small molecules and (c) comparison of multi-RELIEF with four other state-of-the-art algorithms indicates its robustness and best overall performance. AVAILABILITY: A web-server implementation of multi-RELIEF is available at www.ibi.vu.nl/programs/multirelief. Matlab source code of the algorithm and data sets are available on request for academic use.  相似文献   

13.
This article presents an immune inspired algorithm to tackle the Multiple Sequence Alignment (MSA) problem. MSA is one of the most important tasks in biological sequence analysis. Although this paper focuses on protein alignments, most of the discussion and methodology may also be applied to DNA alignments. The problem of finding the multiple alignment was investigated in the study by Bonizzoni and Vedova and Wang and Jiang, and proved to be a NP-hard (non-deterministic polynomial-time hard) problem. The presented algorithm, called Immunological Multiple Sequence Alignment Algorithm (IMSA), incorporates two new strategies to create the initial population and specific ad hoc mutation operators. It is based on the 'weighted sum of pairs' as objective function, to evaluate a given candidate alignment. IMSA was tested using both classical benchmarks of BAliBASE (versions 1.0, 2.0 and 3.0), and experimental results indicate that it is comparable with state-of-the-art multiple alignment algorithms, in terms of quality of alignments, weighted Sums-of-Pairs (SP) and Column Score (CS) values. The main novelty of IMSA is its ability to generate more than a single suboptimal alignment, for every MSA instance; this behaviour is due to the stochastic nature of the algorithm and of the populations evolved during the convergence process. This feature will help the decision maker to assess and select a biologically relevant multiple sequence alignment. Finally, the designed algorithm can be used as a local search procedure to properly explore promising alignments of the search space.  相似文献   

14.
In the growing field of genomics, multiple alignment programs are confronted with ever increasing amounts of data. To address this growing issue we have dramatically improved the running time and memory requirement of Kalign, while maintaining its high alignment accuracy. Kalign version 2 also supports nucleotide alignment, and a newly introduced extension allows for external sequence annotation to be included into the alignment procedure. We demonstrate that Kalign2 is exceptionally fast and memory-efficient, permitting accurate alignment of very large numbers of sequences. The accuracy of Kalign2 compares well to the best methods in the case of protein alignments while its accuracy on nucleotide alignments is generally superior. In addition, we demonstrate the potential of using known or predicted sequence annotation to improve the alignment accuracy. Kalign2 is freely available for download from the Kalign web site (http://msa.sbc.su.se/).  相似文献   

15.
Joo K  Lee J  Kim I  Lee SJ  Lee J 《Biophysical journal》2008,95(10):4813-4819
We present a new method for multiple sequence alignment (MSA), which we call MSACSA. The method is based on the direct application of a global optimization method called the conformational space annealing (CSA) to a consistency-based score function constructed from pairwise sequence alignments between constituting sequences. We applied MSACSA to two MSA databases, the 82 families from the BAliBASE reference set 1 and the 366 families from the HOMSTRAD set. In all 450 cases, we obtained well optimized alignments satisfying more pairwise constraints producing, in consequence, more accurate alignments on average compared with a recent alignment method SPEM. One of the advantages of MSACSA is that it provides not just the global minimum alignment but also many distinct low-lying suboptimal alignments for a given objective function. This is due to the fact that conformational space annealing can maintain conformational diversity while searching for the conformations with low energies. This characteristics can help us to alleviate the problem arising from using an inaccurate score function. The method was the key factor for our success in the recent blind protein structure prediction experiment.  相似文献   

16.
Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue–residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue–residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both single and multi-domain comparisons. The CAB-align software is freely available to academic users as stand-alone software at http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html.  相似文献   

17.
Sequence alignment profiles have been shown to be very powerful in creating accurate sequence alignments. Profiles are often used to search a sequence database with a local alignment algorithm. More accurate and longer alignments have been obtained with profile-to-profile comparison. There are several steps that must be performed in creating profile-profile alignments, and each involves choices in parameters and algorithms. These steps include (1) what sequences to include in a multiple alignment used to build each profile, (2) how to weight similar sequences in the multiple alignment and how to determine amino acid frequencies from the weighted alignment, (3) how to score a column from one profile aligned to a column of the other profile, (4) how to score gaps in the profile-profile alignment, and (5) how to include structural information. Large-scale benchmarks consisting of pairs of homologous proteins with structurally determined sequence alignments are necessary for evaluating the efficacy of each scoring scheme. With such a benchmark, we have investigated the properties of profile-profile alignments and found that (1) with optimized gap penalties, most column-column scoring functions behave similarly to one another in alignment accuracy; (2) some functions, however, have much higher search sensitivity and specificity; (3) position-specific weighting schemes in determining amino acid counts in columns of multiple sequence alignments are better than sequence-specific schemes; (4) removing positions in the profile with gaps in the query sequence results in better alignments; and (5) adding predicted and known secondary structure information improves alignments.  相似文献   

18.

Background

Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms.

Methodology/Principal Findings

We describe a new method to align two or more genomes that have undergone rearrangements due to recombination and substantial amounts of segmental gain and loss (flux). We demonstrate that the new method can accurately align regions conserved in some, but not all, of the genomes, an important case not handled by our previous work. The method uses a novel alignment objective score called a sum-of-pairs breakpoint score, which facilitates accurate detection of rearrangement breakpoints when genomes have unequal gene content. We also apply a probabilistic alignment filtering method to remove erroneous alignments of unrelated sequences, which are commonly observed in other genome alignment methods. We describe new metrics for quantifying genome alignment accuracy which measure the quality of rearrangement breakpoint predictions and indel predictions. The new genome alignment algorithm demonstrates high accuracy in situations where genomes have undergone biologically feasible amounts of genome rearrangement, segmental gain and loss. We apply the new algorithm to a set of 23 genomes from the genera Escherichia, Shigella, and Salmonella. Analysis of whole-genome multiple alignments allows us to extend the previously defined concepts of core- and pan-genomes to include not only annotated genes, but also non-coding regions with potential regulatory roles. The 23 enterobacteria have an estimated core-genome of 2.46Mbp conserved among all taxa and a pan-genome of 15.2Mbp. We document substantial population-level variability among these organisms driven by segmental gain and loss. Interestingly, much variability lies in intergenic regions, suggesting that the Enterobacteriacae may exhibit regulatory divergence.

Conclusions

The multiple genome alignments generated by our software provide a platform for comparative genomic and population genomic studies. Free, open-source software implementing the described genome alignment approach is available from http://gel.ahabs.wisc.edu/mauve.  相似文献   

19.
MOTIVATION: Multiple sequence alignment at the level of whole proteomes requires a high degree of automation, precluding the use of traditional validation methods such as manual curation. Since evolutionary models are too general to describe the history of each residue in a protein family, there is no single algorithm/model combination that can yield a biologically or evolutionarily optimal alignment. We propose a 'shotgun' strategy where many different algorithms are used to align the same family, and the best of these alignments is then chosen with a reliable objective function. We present WOOF, a novel 'word-oriented' objective function that relies on the identification and scoring of conserved amino acid patterns (words) between pairs of sequences. RESULTS: Tests on a subset of reference protein alignments from BAliBASE showed that WOOF tended to rank the (manually curated) reference alignment highest among 1060 alternative (automatically generated) alignments for a majority of protein families. Among the automated alignments, there was a strong positive relationship between the WOOF score and similarity to the reference alignment. The speed of WOOF and its independence from explicit considerations of three-dimensional structure make it an excellent tool for analyzing large numbers of protein families. AVAILABILITY: On request from the authors.  相似文献   

20.
Multiple sequence alignment using partial order graphs   总被引:14,自引:0,他引:14  
MOTIVATION: Progressive Multiple Sequence Alignment (MSA) methods depend on reducing an MSA to a linear profile for each alignment step. However, this leads to loss of information needed for accurate alignment, and gap scoring artifacts. RESULTS: We present a graph representation of an MSA that can itself be aligned directly by pairwise dynamic programming, eliminating the need to reduce the MSA to a profile. This enables our algorithm (Partial Order Alignment (POA)) to guarantee that the optimal alignment of each new sequence versus each sequence in the MSA will be considered. Moreover, this algorithm introduces a new edit operator, homologous recombination, important for multidomain sequences. The algorithm has improved speed (linear time complexity) over existing MSA algorithms, enabling construction of massive and complex alignments (e.g. an alignment of 5000 sequences in 4 h on a Pentium II). We demonstrate the utility of this algorithm on a family of multidomain SH2 proteins, and on EST assemblies containing alternative splicing and polymorphism. AVAILABILITY: The partial order alignment program POA is available at http://www.bioinformatics.ucla.edu/poa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号