首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass, notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tal1 and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tal1, lmo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development.  相似文献   

2.
Neph3 (filtrin) is a membrane protein expressed in the glomerular epithelial cells (podocytes), but its role in the glomerulus is still largely unknown. To characterize the function of Neph3 in the glomerulus, we employed the zebrafish as a model system. Here we show that the expression of neph3 in pronephros starts before the onset of nephrin and podocin expression, peaks when the nephron primordium differentiates into glomerulus and tubulus, and is then downregulated upon glomerular maturation. By histology, we found that neph3 is specifically expressed in pronephric podocytes at 36 hpf. Furthermore, disruption of neph3 expression by antisense morpholino oligonucleotides results in distorted body curvature and transient pericardial edema, the latter likely reflecting perturbation of glomerular osmoregulatory function. Histological analysis of neph3 morphants reveals altered glomerular morphology and dilated pronephric tubules. The phenotype of neph3 morphants, curved body and pericardial edema, is rescued by wild-type zebrafish neph3 mRNA. In addition to glomerulus, neph3 is highly expressed in the developing brain and specific regions of mature midbrain and hindbrain. In line with this, neph3 morphants show aberrant brain morphology. Collectively, the expression of neph3 in glomerulus and brain together with the morphant phenotype imply that neph3 is a pleiotropic gene active during distinct stages of tissue differentiation and associates directly in the regulation of both glomerular and neural development.  相似文献   

3.
4.
The glomerular filtration barrier is necessary for the selective passage of low molecular weight waste products and the retention of blood plasma proteins. Damage to the filter results in proteinuria. The filtration barrier is the major pathogenic site in almost all glomerular diseases and its study is therefore of clinical significance. We have taken advantage of the zebrafish pronephros as a system for studying glomerular filtration. In order to identify new regulators of filtration barrier assembly, we have performed a reverse genetic screen in the zebrafish testing a group of genes which are enriched in their expression within the mammalian glomerulus. In this novel screen, we have coupled gene knockdown using morpholinos with a physiological glomerular dye filtration assay to test for selective glomerular permeability in living zebrafish larvae. Screening 20 genes resulted in the identification of ralgps1, rapgef2, rabgef1, and crb2b. The crumbs (crb) genes encode a family of evolutionarily conserved proteins important for apical-basal polarity within epithelia. The crb2b gene is expressed in zebrafish podocytes. Electron microscopic analysis of crb2b morphants reveals a gross disorganization of podocyte foot process architecture and loss of slit diaphragms while overall polarity is maintained. Nephrin, a major component of the slit diaphragm, is apically mis-localized in podocytes from crb2b morphants suggesting that crb2b is required for the proper protein trafficking of Nephrin. This report is the first to show a role for crb function in podocyte differentiation. Furthermore, these results suggest a novel link between epithelial polarization and the maintenance of a functional filtration barrier.  相似文献   

5.
6.
7.
8.
9.
10.
We have previously identified a novel protein kinase, pk146, in the brain of Tetraodon. In the present study, we cloned the homologous protein kinase gene encoding a protein of 385 amino acid residues from zebrafish. The overall amino acid sequence and the kinase domain of zebrafish BSK146 shows 48% and 69% identity to that of rat sbk, a SH3-containing serine/threonine protein kinase. By whole-mount in situ hybridization and RT-PCR, the expression of bsk146 mRNA was mainly in the brain. To explore the in vivo function of BSK146 during zebrafish development, we used morpholino knockdown approach and found that BSK146 morphants displayed enlarged hindbrain ventricle and smaller eyes. Whole-mount in situ hybridization was further performed to analyze the brain defects in BSK146-MO-injected embryos. The expression of brain-specific markers, such as otx2, pax2.1, and krox20, was found normal in morphant embryos at 24hpf, while expression of pax2.1 exerted changes in midbrain-hindbrain boundary and hindbrain in morphant embryos at 48hpf. These data suggest that BSK146 may play an important role in later ventricle expansion in zebrafish brain development. Although the recombinant BSK146 protein produced in insect cells was active and could phosphorylate both histone H1 and histone 2B, the endogenous substrate of BSK146 in the embryonic brain of zebrafish is not clear at the present time and needs further investigation.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
The differentiation of endothelial cells is tightly connected with the formation of blood vessels during vertebrate development. The signaling pathways mediated by vascular endothelial growth factor (vegf) are required for these processes. Here we show that a proto-oncogene, meis1, plays important roles in the vascular development in zebrafish. Knockdown of meis1 by anti-sense meis1 morpholino (meis1 MO) led to the impairment of intersegmental vessel (ISV) formation. In meis1 morphants, the expression of an artery marker was reduced in dorsal aorta (DA), and the expression of vein markers was expanded in DA and posterior cardinal vein (PCV), suggesting the defects on artery development. Furthermore, the expression of vegf receptor, flk1, was significantly decreased in these embryos. Interestingly, flk1 MO-injected embryos exhibited similar defects as meis1 morphants. Thus, these results implicate that meis1 is a novel regulator involved in endothelial cell development, presumably affecting the vegf signaling pathway.  相似文献   

20.
Carboxyl ester lipase (Cel), is a lipolytic enzyme secreted by the pancreas, which hydrolyzes various species of lipids in the gut. Cel is also secreted by mammary gland during lactation and exists in breast milk. It facilitates dietary fat digestion and absorption, thus contributing to normal infant development. This study aimed to examine whether the Cel in zebrafish embryos has a similar role of maternal lipid utilization as in human infants, and how Cel contributes to the utilization of yolk lipids in zebrafish. The cel1 and cel2 genes were expressed ubiquitously in the blastodisc and yolk syncytial layer before 24 hpf, and in the exocrine pancreas after 72 hpf. The cel1 and cel2 morphants exhibited developmental retardation and yolk sac retention. The total cholesterol, cholesterol ester, free cholesterol, and triglyceride were reduced in the morphants' body while accumulated in the yolk (except triglyceride). The FFA content of whole embryos was much lower in morphants than in standard controls. Moreover, the delayed development in cel (cel1/cel2) double morphants was partially rescued by FFA and cholesterol supplementation. Delayed and weakened cholesterol ester transport to the brain and eyes was observed in cel morphants. Correspondingly, shrunken midbrain tectum, microphthalmia, pigmentation-delayed eyes as well as down-regulated Shh target genes were observed in the CNS of double morphants. Interestingly, cholesterol injections reversed these CNS alterations. Our findings suggested that cel genes participate in the lipid releasing from yolk sac to developing body, thereby contributing to the normal growth rate and CNS development in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号