首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectacular extension of the acrosomal process in Limulus sperm is effected by a bundle of actin-containing filaments with apparently no contribution from myosin. The bundle is coiled about the base of the sperm and, upon reaction, unwinds and extends out of the anterior end of the sperm with a screwing motion. We have analyzed the structure of the bundle in the coil and following its discharge. Optical diffraction studies of electron micrographs show a difference in the twist of the filaments in the two forms. The filaments in the coil have a twist of 0.23 ° per subunit more than that in the true discharge. As the signal to extend moves down the coil, the filaments change their twist and the bundle straightens. The coupling of these two movements produces the screwing motion. In the coil, the filaments wind around the axis of the bundle. As the filaments change their twist, the winding is undone. From freeze-fracture replicas we determined the hand of the winding of filaments in the coil and, in thin sections, we were able to determine the number of turns the filaments make for each loop of the coil. From these data we were able to predict the hand and amount of rotation during the discharge. From movie film sequences we could determine only the amount of rotation and found it to be 0.25 ° ± 0.05 ° per subunit discharged. This is in reasonable agreement with the expected value of 0.23 ° ± 0.05 ° per subunit. We propose that it is the change in twist of the actin filaments themselves that is responsible for the generation of force for the extension of the acrosomal process.  相似文献   

2.
An actin filament bundle approximately 2-5 microns in length is present in the sperm of the blue mussel, Mytilus. In unfired sperm this bundle extends from the midpiece through a canal in the center of the nucleus to terminate on the membrane limiting the inside of the cone-shaped acrosomal vacuole. The bundle is composed of 45-65 actin filaments which are hexagonally packed and regularly cross-bridged together to form an actin paracrystal so well ordered that it has six nearly equal faces. Upon induction of the acrosomal reaction, a needle-like process is formed in a few seconds. Within this process is the actin filament bundle which appears unchanged in filament number and packing as determined by optical diffraction methods. Using fluorescein-conjugated phalloidin we were able to establish that the bundle does not change length but instead is projected anteriorly out of the midpiece and nuclear canal like an arrow. Existing mechanisms to explain this extension cannot apply. Specifically, the bundle does not increase in length (no polymerization), does not change its organization (no change in actin twist), does not change filament number (no filament sliding), and cannot move by myosin (wrong polarity). Thus we are forced to look elsewhere for a mechanism and have postulated that at least a component of this movement, or cell elongation, is the interaction of the actin filament bundle with the plasma membrane.  相似文献   

3.
Actin filaments elongate from their membrane-associated ends   总被引:22,自引:19,他引:3       下载免费PDF全文
In limulus sperm an actin filament bundle 55 mum in length extends from the acrosomal vacuole membrane through a canal in the nucleus and then coils in a regular fashion around the base of the nucleus. The bundle expands systematically from 15 filaments near the acrosomal vacuole to 85 filaments at the basal end. Thin sections of sperm fixed during stages in spermatid maturation reveal that the filament bundle begins to assemble on dense material attached to the acrosomal vacuole membrane. In micrographs fo these early stages in maturation, short bundles are seen extending posteriorly from the dense material. The significance is that these short, developing bundles have about 85 filaments, suggesting that the 85-filament end of the bundle is assembled first. By using filament bundles isolated and incubated in vitro with G actin from muscle, we can determine the end “preferred” for addition of actin monomers during polymerization. The end that would be associated with the acrosomal vacuole membrane, a membrane destined to be continuous with the plasma membrane, is preferred about 10 times over the other, thicker end. Decoration of the newly polymerized portions of the filament bundle with subfragment 1 of myosin reveals that the arrowheads point away from the acrosomal vacuole membrane, as is true of other actin filament bundles attached to membranes. From these observations we conclude that the bundle is nucleated from the dense material associated with the acrosomal vacuole and that monomers are added to the membrane-associated end. As monomers are added at the dense material, the thick first-made end of the filament bundle is pushed down through the nucleus where, upon reaching the base of the nucleus, it coils up. Tapering is brought about by the capping of the peripheral filaments in the bundle.  相似文献   

4.
Actin carries out many of its cellular functions through its filamentous form; thus, understanding the detailed structure of actin filaments is an essential step in achieving a mechanistic understanding of actin function. The acrosomal bundle in the Limulus sperm has been shown to be a quasi-crystalline array with an asymmetric unit composed of a filament with 14 actin-scruin pairs. The bundle in its true discharge state penetrates the jelly coat of the egg. Our previous electron crystallographic reconstruction demonstrated that the actin filament cross-linked by scruin in this acrosomal bundle state deviates significantly from a perfect F-actin helix. In that study, the tertiary structure of each of the 14 actin protomers in the asymmetric unit of the bundle filament was assumed to be constant. In the current study, an actin filament atomic model in the acrosomal bundle has been refined by combining rigid-body docking with multiple actin crystal structures from the Protein Data Bank and constrained energy minimization. Our observation demonstrates that actin protomers adopt different tertiary conformations when they form an actin filament in the bundle. The scruin and bundle packing forces appear to influence the tertiary and quaternary conformations of actin in the filament of this biologically active bundle.  相似文献   

5.
An axial rod in abalone ( Haliotis discus ) sperm is a structure composed of a bundle of actin filaments, which elongates anteriorly to form the acrosomal process during the acrosome reaction. The ultrastructure of the actin filament bundle constituting the axial rod was examined using quick freeze technique followed by either freeze-substitution or deep-etch electron microscopy. Thin sections of quick freeze and freeze-substituted sperm revealed that the actin filaments in the axial rod are hexagonally packed in a paracrystalline array through its almost entire length with an average center-to-center spacing of 12 nm. Periodic transverse bands were also observed across the actin filament bundle, which may reflect the cross-bridges interconnecting the adjacent filaments. Quick-freeze deep-etch analysis provided the three-dimensional view of the axial rod. Actin filaments exhibiting 5.5–6 nm spaced striations were observed to run in parallel with each other inside the axial rod. The existence of cross-bridging structures was also displayed between adjacent filaments. These results suggest that the actin filaments in the axial rod are probably held together by regularly spaced cross-bridges to form a well ordered hexagonally packed bundle, and also cross-linked by fibrous structure to the lateral inner acrosomal membrane which closely surrounds the anterior half of the actin filament bundle.  相似文献   

6.
Thyone sperm were demembranated with Triton X-100 and, after washing, extracted with 30 mM Tris at pH 8.0 and 1 mM MgCl2. After the insoluble contaminants were removed by centrifugation, the sperm extract was warmed to 22 degrees C. Actin filaments rapidly assembled and aggregated into bundles when KCl was added to the extract. When we added preformed actin filaments, i.e., the acrosomal filament bundles of Limulus sperm, to the extract, the actin monomers rapidly assembled on these filaments. What was unexpected was that assembly took place on only one end of the bundle--the end corresponding to the preferred end for monomer addition. We showed that the absence of growth on the nonpreferred end was not due to the presence of a capper because exogenously added actin readily assembled on both ends. We also analyzed the sperm extract by SDS gel electrophoresis. Two major proteins were present in a 1:1 molar ratio: actin and a 12,500-dalton protein whose apparent isoelectric point was 8.4. The 12,500-dalton protein was purified by DEAE chromatography. We concluded that it is profilin because of its size, isoelectric point, molar ratio to actin, inability to bind to DEAE, and its effect on actin assembly. When profilin was added to actin in the presence of Limulus bundles, addition of monomers on the nonpreferred end of the bundle was inhibited, even though actin by itself assembled on both ends. Using the Limulus bundles as nuclei, we determined the critical concentration for assembly off each end of the filament and estimated the Kd for the profilin-actin complex (approximately 10 microM). We present a model to explain how profilin may regulate the extension of the Thyone acrosomal process in vivo: The profilin-actin complex can add to only the preferred end of the filament bundle. Once the actin monomer is bound to the filament, the profilin is released, and is available to bind to additional actin monomers. This mechanism accounts for the rapid rate of filament elongation in the acrosomal process in vivo.  相似文献   

7.
When a newt sperm-head was treated with trypsin and DNase, an arrow-like thin rod was revealed. This rod presumably corresponds to the ‘perforatorium’ described by Picheral [1, 2] in Pleurodele sperm. It consisted of one apical and one caudal part. In the apical part there appeared to be an envelope with a 530 Å structural repeat, inside which coursed a filament bundle, presumably identical with that in the caudal part. In the caudal part, a characteristic filament bundle, quite similar to the paracrystal of rabbit skeletal actin [3], was observed after extensive treatment with trypsin. The optical diffraction pattern of this bundle indicates that it has the same helical symmetry as that of rabbit skeletal actin [4] but slightly different from that of the acrosomal process of Limulus sperm [5]. The diffraction pattern frequently has a strong meridional reflection at about (27 Å)−1, which is usually observed only with low intensity in the actin paracrystals. This fact suggests that the structural unit in the bundle has a shape considerably different from that of the usual G-actin.  相似文献   

8.
Crystallographic analysis of acrosomal bundle from Limulus sperm   总被引:5,自引:0,他引:5  
The acrosomal process of Limulus sperm contains a bundle of filaments composed of actin and a 102 kDa protein in a 1:1 molar ratio. The structure of the bundle in true discharge was investigated by electron cryomicroscopy, X-ray scattering and crystallographic image analysis. A bundle can be characterized as a quasi-crystal with continuously varying views along the bundle axis. Each segment of the bundle is found to obey the symmetry of space group P1, with a = b = 147 A, c = 762 A, alpha = 90 degrees, beta = 90.6 degrees, gamma = 120 degrees. A unit cell contains a helical repeat of the filament with a selection rule following that of an actin filament. A 24 A projection map based on the h0l view was reconstructed after averaging 5300 unit cells from six electron images. Filaments in this projection are well separated and clearly display a 21 screw symmetry. This screw symmetry results from the helical parameters of the bundle filament and is found to be a non-crystallographic symmetry element present in the unit cell. Our structural analysis has led to the proposal that the assembly of a stable bundle with a defined maximum diameter can be controlled by the crystallographic packing of the twisted filaments.  相似文献   

9.
When Limulus sperm are induced to undergo the acrosomal reaction, a process, 50 mum in length, is generated in a few seconds. This process rotates as it elongates; thus the acrosomal process literally screws through the jelly of the egg. Within the process is a bundle of filaments which before induction are coiled up inside the sperm. The filament bundle exists in three stable states in the sperm. One of the states can be isolated in pure form. It is composed of only three proteins whose molecular weights (mol wt) are 43,000, 55,000, and 95,000. The 43,000 mol wt protein is actin, based on its molecular weight, net charge, morphology, G-F transformation, and heavy meromyosin (HMM) binding. The 55,000 mol wt protein is in equimolar ratio to actin and is not tubulin, binds tenaciously to actin, and inhibits HMM binding. Evidence is presented that both the 55,000 mol wt protein and the 95,000 mol wt protein (possibly alpha-actinin) are also present in Limulus muscle. Presumably these proteins function in the sperm in holding the actin filaments together. Before the acrosomal reaction, the actin filaments are twisted over one another in a supercoil; when the reaction is completed, the filaments lie parallel to each other and form an actin paracrystal. This change in their packing appears to give rise to the motion of the acrosomal process and is under the control of the 55,000 mol wt protein and the 95,000 mol wt protein.  相似文献   

10.
Thyone sperm were induced to undergo the acrosomal reaction with a calcium ionophore A23187 in sea water containing 50 mM excess CaCl2, and the extension of the acrosomal process was recorded with high- resolution, differential interference contrast video microscopy at 60 fields/sec. The length of the acrosomal process was measured at 0.25-s intervals on nine sperm. When the data were plotted as (length)2 vs. time, the points fell exactly on a straight line except for the initial and very final stages of elongation. Cytochalasin B alters the rate of elongation of the acrosomal process in a dose-dependent way, inhibiting the elongation completely at high concentrations (20 micrograms/ml). However, no inhibition was observed unless excess Ca++ was added to sea water. The concentration of actin in the periacrosomal cup of the unreacted sperm is as high as 160 mg/ml; we calculate this concentration from the number and lengths of the actin filaments in a fully reacted sperm, and the volume of the periacrosomal cup in the unreacted sperm. These results are consistent with the hypothesis proposed earlier that monomers add to the ends of the actin filaments situated at the tip of the growing acrosomal process (the preferred end for monomer addition), and that the rate of elongation of the process is limited by diffusion of monomers from the sperm head (periacrosomal cup) to the tip of the elongating process. During the extension of the acrosomal process, a few blebs distributed along its lengths move out with the process. These blebs maintain a constant distance from the tip of the growing process. At maximum length, the straight acrosomal process slackens into a bow, and numerous new blebs appear. A few seconds later, the process suddenly straightens out again and sometimes actually contracts. The behavior of the blebs indicates that membrane is inserted at the base of the growing acrosomal process, and that membrane assembly and water uptake must be coupled to actin assembly during elongation. We discuss how the dynamic balance of forces seems to determine the shape of the growing acrosomal process, and how actin assembly may be controlled during the acrosomal reaction.  相似文献   

11.
Frozen, hydrated acrosomal bundles from Limulus sperm were imaged with a 400 kV electron cryomicroscope. Segments of this long bundle can be studied as a P1 crystal with a unit cell containing an acrosomal filament with 28 actin and 28 scruin molecules in 13 helical turns. A novel computational procedure was developed to extract single columns of superimposed acrosomal filaments from the distinctive crystallographic view. Helical reconstruction was used to generate a three-dimensional structure of this computationally isolated acrosomal filament. The scruin molecule is organized into two domains which contact two actin subunits in different strands of the same actin filament. A correlation of Holmes' actin filament model to the density in our acrosomal filament map shows that actin subdomains 1, 2, and 3 match the model density closely. However, actin subdomain 4 matches rather poorly, suggesting that interactions with scruin may have altered actin conformation. Scruin makes extensive interactions with helix-loop-beta motifs in subdomain 3 of one actin subunit and in subdomain 1 of a consecutive actin subunit along the genetic filament helix. These two actin subdomains are structurally homologous and are closely spaced along the actin filament. Our model suggests that scruin, which is derived from a tandemly duplicated gene, has evolved to bind structurally homologous but non-identical positions across two consecutive actin subunits.  相似文献   

12.
Bending stiffness of a crystalline actin bundle   总被引:1,自引:0,他引:1  
The acrosomal process of the sperm of the horseshoe crab (Limulus polyphemus) is a unique crystalline actin bundle, consisting of multiple actin filaments cross-linked by the actin-bundling protein, scruin. For successful fertilization, the acrosomal bundle must penetrate through a 30 microm thick jelly coat surrounding the egg and thus it must be sufficiently stiff. Here, we present two measurements of the bending stiffness of a single crystalline bundle of actin. Results from these measurements indicate that the actin:scruin composite bundle has an average elastic modulus of 2 GPa, which is similar to that of a single actin filament, and a bending stiffness that is more than two orders of magnitude larger than that of a bundle of uncross-linked actin filaments due to stiffening by the scruin matrix.  相似文献   

13.
We have re-examined the Ca(++)-dependent interaction of an intestinal microvillar 95- kdalton protein (MV-95K) and actin using the isolated acrosomal process bundles from limulus sperm. Making use of the processes as nuclei for assembling actin filaments, we quantitatively and qualitatively examined MV-95K’s effect on filament assembly and on F- actin, both in the presence and in the absence of Ca(++). The acrosomal processes are particularly advantageous for this approach because they nucleate large numbers of filaments, they are extremely stable, and their morphology can be used to determine the polarity of any nucleated filaments. When filament nucleation was initiated in the presence of MV-95K and the absence of Ca(++), there was biased filament assembly from the bundle ends. The calculated elongation rates from both the barbed and pointed filament ends were virtually indistinguishable from control preparations. In the presence of Ca(++), MV-95K completely inhibited filament assembly from the barbed filament end without affecting the initial rate of assembly from the pointed filament end. The inhibition of assembly results from MV-95K binding to and capping the barbed filament end, thereby preventing monomer addition. This indicates that, while MV-95K is a potent nucleator of actin assembly, it is also a potent inhibitor of actin filament elongation. To examine the effects of MV-95K on F-actin in the presence of Ca(++), we developed an assay where MV-95K is added to filaments previously assembled from acrosomal processes without causing filament breakage during mixing. These results clearly demonstrated that rapid filament shortening by MV-95K results through a mechanism of disrupting intrafilament monomer-monomer interactions. Finally, we show that tropomyosin-containing actin filaments are insensitive to cutting, but not to capping, by MV-95K in the presence of Ca(++).  相似文献   

14.
In an attempt to investigate the role of water influx in the extension of the acrosomal process of Thyone sperm, we induced the acrosomal reaction in sea water whose osmolarity varied from 50 to 150% of that of sea water. (a) Video sequences of the elongation of the acrosomal processes were made; plots of the length of the acrosomal process as a function of (time)1/2 produced a straight line except at the beginning of elongation and at the end in both hypotonic and hypertonic sea water (up to 1.33 times the osmolarity of sea water), although the rate of elongation was fastest in hypotonic sea water and was progressively slower as the tonicity was raised. (b) Close examination of the video sequences revealed that regardless of the tonicity of the sea water, the morphology of the acrosomal processes were similar. (c) From thin sections of fixed sperm, the amount of actin polymerization that takes place is roughly coupled to the length of the acrosomal process formed so that sperm with short processes only polymerize a portion of the actin that must be present in those sperm. From these facts we conclude that the influx of water and the release of actin monomers from their storage form in the profilactin (so that these monomers can polymerize) are coupled. The exact role of water influx, why it occurs, and whether it could contribute to the extension of the acrosomal process by a hydrostatic pressure mechanism is discussed.  相似文献   

15.
The polarity of the actin filaments which assemble from the nucleating body or actomere of Thyone and Pisaster sperm was determined using myosin subfragment 1 decoration. The polarity was found to be unidirectional with the arrowheads pointing towards the cell center. When polymerization is induced at low temperature with concentrations of actin near the critical concentration for polymerization, elongation of filaments occurs preferentially off the apical end. If the sperm are induced to undergo the acrosomal reaction with an ionophore, the polarity of the actin filaments attached to the actomere is the same as that already described, but the filaments which polymerize parallel to, but peripheral to, those extending from the actomere are randomly polarized. These randomly polarized filaments appear to result from spontaneous nucleation. When sperm are induced to undergo the acrosomal reaction with eggs, the polarity of the actin filaments is also unidirectional with the arrowheads pointing towards the cell center. From these results we conclude: (a) that the actomere, by nucleating the polymerization of actin filaments, controls the polarity of the actin filaments in the acrosomal process, (b) that the actomere recognizes a surface of the actin monomer that is different from that surface recognized by the dense material attached to membranes, and (c) that egg myosin could not act to pull the sperm into the egg. Included is a discussion of how the observation that monomers add largely to one end of a decorated filament in vitro relates to these in vivo observations.  相似文献   

16.
Three-dimensional reconstruction of an actin bundle   总被引:7,自引:6,他引:1       下载免费PDF全文
We present the three-dimensional structure of an actin filament bundle from the sperm of Limulus. The bundle is a motile structure which by changing its twist, converts from a coiled to an extended form. The bundle is composed of actin plus two auxiliary proteins of molecular masses 50 and 60 kD. Fraying the bundle with potassium thiocyanate created three classes of filaments: actin, actin plus the 60-kD protein, and actin plus both the auxiliary proteins. We examined these filaments by transmission electron microscopy and scanning transmission electron microscopy (STEM). Three-dimensional reconstructions from electron micrographs allowed us to visualize the actin subunit and the 60- and 50-kD subunits bound to it. The actin subunit appears to be bilobed with dimensions 70 X 40 X 35 A. The inner lobe of the actin subunit, located at 20 A radius, is a prolate ellipsoid, 50 X 25 A; the outer actin lobe, at 30 A radius, is a 35-A-diam spheroid. Attached to the inner lobe of actin is the 60-kD protein, an oblate spheroid, 55 X 40 A, at 50 A radius. The armlike 50-kD protein, at 55 A radius, links the 60-kD protein on one of actin's twin strands to the outer lobe of the actin subunit on the opposite strand. We speculate that the 60-kD protein may be a bundling protein and that the 50-kD protein may be responsible for the change in twist of the filaments which causes extension of the bundle.  相似文献   

17.
Limulus sperm contains a dynamic macromolecular structure that rapidly extends a 50 microm process called the true discharge. The core of this structure is a bundle of ordered filaments composed of a complex of actin, scruin and calmodulin. We determined its structure by electron crystallographic reconstruction. The three-dimensional map reveals an actin-scruin helix that is azimuthally modulated by the influence of the interactions of a filament with its neighbors. There are a variety of density connections with neighboring filaments involving scruin. Scruin commonly contacts one neighbor, but we observe up to three interfilament connections involving both domains of the 28 scruin molecules in the unit cell. Our structure indicates that promiscuous scruin-scruin contacts are the major determinants of bundle stability in the true discharge. It also suggests that rearrangements would be permitted, which can facilitate the transition from the coiled to the true discharge form.  相似文献   

18.
The acrosome reaction (AR) was induced in sperm from the brachyuran crustacean Uca tangeri either by mixing male and female gametes in filtered seawater or by treating the spermatozoa with the divalent cation ionophore A23187. This latter method provided a sufficient number of reacted spermatozoa to allow a detailed ultrastructural study of the AR. The process consists of two separate phases: a) initial release of the acrosomal vesicle contents, and b) further elongation of the acrosomal filament, which causes reversal of the rigid capsule limiting the acrosomal vesicle contents. The elongate acrosomal filament consists of an apical perforatorium and a basal columnar structure called here the proximal piece. The former derives from the perforatorium of the uninduced sperm stage with only small ultrastructural changes. The proximal piece forms from myelin-like membrane layers which are initially distributed all around the subacrosomal region and then accumulate in a column at the perforatorial base, thus promoting a sudden forward projection of the perforatorium. The AR in brachyurans is thought to be a passive mechanism that utilizes the negative pressure exerted on the nucleus--caused by emptying of the acrosomal vesicle--for an organized accumulation of membrane-rich material immediately behind the perforatorium, with the final result of the raising of a 3 microns long acrosomal filament.  相似文献   

19.
20.
Between the acrosomal vacuole and the nucleus is a cup of amorphous material (profilactin) which is transformed into filaments during the acrosomal reaction. In the center of this cup in untreated Thyone sperm is a dense material which I refer to as the actomere; it is composed of 20-25 filaments embedded in a dense matrix. To visualize the substructure of the actomere, the profilactin around it must be removed. This is achieved either by demembranating the sperm with Triton X-100 and then raising the pH to 8.0, or by adding inophores to intact sperm at pH 8.0. Under these conditions, the actomere remains as a unit while the rest of the profilactin is solubilized or polymerized. When demembranated sperm are incubated under conditions in which the actin should polymerize, filaments grow from the end of the actomere: the actomere thus appears to behave as a nucleating body. This observation is strengthened by experiments in which untreated sperm are incubated in seawater or isotonic NaCl at pH 7.0 and the ionophore X537A is added; in this case, only a partial polymerization of the actin occurs and the acrosomal vacuole does not fuse with the cell surface. The actin filaments that do form, however, are attached to the apical end of the actomere. In fact, the elongating filaments push their way into and frequently through the acrosomal vacuole. Thus, it appears that the sperm organizes the actin filaments by controlling their nucleation. My model is that the cell controls the ammount of unbound actin such that it is slightly above the critical concentration for polymerization. Then, spontaneous nucleation is unfavored and polymerization would proceed from existing nuclei such as the actomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号