首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectral changes caused by binding soft ligands to the cytochrome c iron and their correlation to ligand affinities support the hypothesis that the iron—methionine sulfur bond of this heme protein is enhanced by delocalization of the metal l2, electrons into the empty 3d orbitals of the ligand atom. These findings also explain the unique spectrum of cytochrome c in the far red.  相似文献   

2.
The amino acid at position 51 in the cytochrome c 6 family is responsible for modulating over 100 mV of heme midpoint redox potential. As part of the present work, the X-ray structure of the imidazole adduct of the photosynthetic cytochrome c 6 Q51V variant from Phormidium laminosum has been determined. The structure reveals the axial Met ligand is dissociated from the heme iron but remains inside the heme pocket and the Ω-loop housing the Met ligand is stabilized through polar interactions with the imidazole and heme propionate-6. The latter is possible owing to a 180° rotation of both heme propionates upon imidazole binding. From equilibrium and kinetic studies, a Val residue at position 51 increases the stability of the Fe–S(Met) interaction and also affects the dynamics associated with imidazole binding. In this respect, the k obs for imidazole binding to Arabidopsis thaliana cytochrome c 6A, which has a Val at the position equivalent to position 51 in photosynthetic cytochrome c 6, was found to be independent of imidazole concentration, indicating that the binding process is limited by the Met dissociation rate constant (about 1 s−1). For the cytochrome c 6 Q51V variant, imidazole binding was suppressed in comparison with the wild-type protein and the V52Q variant of cytochrome c 6A was found to bind imidazole readily. We conclude that the residue type at position 51/52 in the cytochrome c 6 family is additionally responsible for tuning the stability of the heme iron–Met bond and the dynamic properties of the ferric protein fold associated with endogenous ligand binding.  相似文献   

3.
A cytochrome aa 3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a 3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa 3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa 3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO methan monooxygenase - sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - TMPD N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride - Na2EDTA disodium ethylenediamine-tetraacetic acid  相似文献   

4.
Nonnative heme coordination structures emerging upon guanidine hydrochloric acid (GdnHCl) induced unfolding of Hydrogenobacter thermophilus ferricytochrome c 552 were characterized by means of paramagnetic NMR. The heme coordination structure possessing the N-terminal amino group of the peptide chain in place of axial Met (His–Nterm form) was determined in the presence of GdnHCl concentrations in excess of 1.5 M at neutral pH. The stability of the His–Nterm form at pH 7.0 was found to be comparable with that of the bis-His form which has been recognized as a major nonnative heme coordination structure in cytochrome c folding/unfolding. Consequently, in addition to the bis-His form, the His–Nterm form is a substantial intermediate which affects the pathway and kinetics of the folding/unfolding of cytochromes c, of which the N-terminal amino groups are not acetylated. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
M.J. Tervoort  B.F. Van Gelder 《BBA》1983,722(1):137-143
The optical spectrum of reduced bovine cytochrome c1 at 77 K shows a fine splitting of the β-band, which is indicative of the native conformation of the protein. At room temperature, this conformation is reflected in an absorbance band at 530 nm. The exposure of the heme of ferrocytochrome c1, investigated by means of solvent-perturbation spectroscopy, appears to be extremely sensitive to temperature and SH reagents bound to the oxidized protein. Addition of combinations of potential ligands to the isolated tryptic heme peptide of cytochrome c1 reveals that only a mixture of methionine and cysteine (or their equivalents) generates a β-band at 77 K which is identical in shape to that of native cytochrome c1. In the EPR spectrum of a complex of ferrocytochrome c1 and nitric oxide at pH 10.5, no hyperfine splitting derived from a second ligated nitrogen atom could be detected. The results indicate that methionine and cysteine are the axial ligands of heme in cytochrome c1. The EPR spectrum of isolated ferricytochrome c1 is that of a low-spin heme iron compound with a gz value of 3.36 and a gy value of 2.04.  相似文献   

6.
Cytochrome a 1 c 1 was highly purified from Nitrobacter agilis. The cytochrome contained heme a and heme c of equimolar amount, and its reduced form showed absorption peaks at 587, 550, 521, 434 and 416 nm. Molecular weight per heme a of the cytochrome was estimated to be approx. 100,000–130,000 from the amino acid composition. A similar value was obtained by determining the protein content per heme a. The cytochrome molecule was composed of three subunits with molecular weights of 55,000, 29,000 and 19,000, respectively. The 29 kd subunit had heme c.Hemes a and c of cytochrome a 1 c 1 were reduced on addition of nitrite, and the reduced cytochrome was hardly autoxidizable. Exogenously added horse heart cytochrome c was reduced by nitrite in the presence of cytochrome a 1 c 1; K m values of cytochrome a 1 c 1 for nitrite and N. agilis cytochrome c were 0.5 mM and and 6 M, respectively. V max was 1.7 mol ferricytochrome c reduced/min·mol of cytochrome a 1 c 1 The pH optimum of the reaction was about 8. The nitrite-cytochrome c reduction catalyzed by cytochrome a 1 c 1 was 61% and 88% inhibited by 44M azide and cyanide, respectively. In the presence of 4.4 mM nitrate, the reaction was 89% inhibited. The nitrite-cytochrome c reduction catalysed by cytochrome a 1 c 1 was 2.5-fold stimulated by 4.5 mM manganous chloride. An activating factor which was present in the crude enzyme preparation stimulated the reaction by 2.8-fold, and presence of both the factor and manganous ion activated the reaction by 7-fold.Cytochrome a 1 c 1 showed also cytochrome c-nitrate reductase activity. The pH optimum of the reaction was about 6. The nitrate reductase activity was also stimulated by manganous ions and the activating factor.  相似文献   

7.
Dimethyl sulfide dehydrogenase isolated from the photosynthetic bacterium Rhodovulum sulfidophilum is a heterotrimeric enzyme containing a molybdenum cofactor at its catalytic site, as well as five iron–sulfur clusters and a heme b cofactor. It oxidizes dimethyl sulfide (DMS) to dimethyl sulfoxide in its native role and transfers electrons to the photochemical reaction center. There is genetic evidence that cytochrome c 2 mediates this process, and the steady state kinetics experiments reported here demonstrated that cytochrome c 2 accepts electrons from DMS dehydrogenase. At saturating concentrations of both substrate (DMS) and cosubstrate (cytochrome c 2), Michaelis constants, K M,DMS and K M,cyt of 53 and 21 μM, respectively, were determined at pH 8. Further kinetic analysis revealed a “ping-pong” enzyme reaction mechanism for DMS dehydrogenase with its two reactants. Direct cyclic voltammetry of cytochrome c 2 immobilized within a polymer film cast on a glassy carbon electrode revealed a reversible FeIII/II couple at +328 mV versus the normal hydrogen electrode at pH 8. The FeIII/II redox potential exhibited only minor pH dependence. In the presence of DMS dehydrogenase and DMS, the peak-shaped voltammogram of cytochrome c 2 is transformed into a sigmoidal curve consistent with a steady-state (catalytic) reaction. The cytochrome c 2 effectively mediates electron transfer between the electrode and DMS dehydrogenase during turnover and a significantly lower apparent electrochemical Michaelis constant of 13(±1) μM was obtained. The pH optimum for catalytic DMS oxidation by DMS dehydrogenase with cytochrome c 2 as the electron acceptor was found to be approximately 8.3.  相似文献   

8.
The cytochrome (Cyt) c-554 in thermophilic green photosynthetic bacterium Chlorobaculum tepidum serves as an intermediate electron carrier, transferring electrons to the membrane-bound Cyt c z from various enzymes involved in the oxidations of sulfide, thiosulfate, and sulfite compounds. Spectroscopically, this protein exhibits an asymmetric α-absorption band for the reduced form and particularly large paramagnetic 1H NMR shifts for the heme methyl groups with an unusual shift pattern in the oxidized form. The crystal structure of the Cyt c-554 has been determined at high resolution. The overall fold consists of four α-helices and is characterized by a remarkably long and flexible loop between the α3 and α4 helices. The axial ligand methionine has S-chirality at the sulfur atom with its CεH3 group pointing toward the heme pyrrole ring I. This configuration corresponds to an orientation of the lone-pair orbital of the sulfur atom directed at the pyrrole ring II and explains the lowest-field 1H NMR shift arising from the 181 heme methyl protons. Differing from most other class I Cyts c, no hydrogen bond was formed between the methionine sulfur atom and polypeptide chain. Lack of this hydrogen bond may account for the observed large paramagnetic 1H NMR shifts of the heme methyl protons. The surface-exposed heme pyrrole ring II edge is in a relatively hydrophobic environment surrounded by several electronically neutral residues. This portion is considered as an electron transfer gateway. The structure of the Cyt c-554 is compared with those of other Cyts c, and possible interactions of this protein with its electron transport partners are discussed.  相似文献   

9.
 A soluble monoheme c–type cytochrome c 6 has been isolated from the cyanobacterium Anabaena PCC 7119. It is a basic protein, with a molecular mass of 9.7 kDa, which accepts electrons from Anabaena ferredoxin in the ferredoxin-NADP+reductase-dependent NADPH cytochrome c reductase activity assay. The turnover of the reaction has an optimum pH at 7.5. Flavodoxin can also replace ferredoxin in this assay, but with only 20% efficiency. Plastocyanin from Anabaena PCC 7119, as well as the c 6 cytochromes from the green algae Chlorella fusca and Monoraphidium braunii are also shown to accept electrons from Anabaena ferredoxin. The reduction potential of cytochrome c 6 at pH 6.7 was determined to be 338 mV and is pH dependent, with pK a ox=8.4±0.1 and pK a red≈9.5. The ferric and ferrous cytochrome forms and their pH equilibria have been studied using visible, EPR and 1H-NMR spectroscopies. The amino acid sequence and the visible and NMR spectroscopic data indicate that the heme iron has a methionine-histidine axial coordination in the pH range 5–11. However, the EPR data for the ferricytochrome are complex and show that in this pH range five distinct forms are present. Between pH 5 and 9 the spectrum is dominated by two rhombic species, with g–values at 2.94, 2.29, 1.43 and at 2.84, 2.34, 1.56, which interconvert with a pK a of 8.4. The NMR data also show a main interconversion between two cytochrome forms at this pH, which coincides with that determined from the pH dependence of the reduction potential. Both these forms were associated with a methionine-histidine heme-iron coordination by correlation with the visible and NMR spectral data, although having crystal field parameters atypical for this type of coordination. Anabaena cytochrome c 6 is one more example of a heme protein for which the widely used crystal field analysis of the EPR data (truth diagram) fails to unequivocally determine the type of heme-iron ligation. Received: 17 May 1996 / Accepted: 13 January 1997  相似文献   

10.
Yeast flavocytochrome b 2 tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b 2. Each subunit of the soluble tetrameric enzyme consists of an N terminal b 5-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b 2 domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b 2 functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b 5-like domain is fused to proteins carrying other redox functions.  相似文献   

11.
Two cytochromes c5 (SBcytc and SVcytc) have been derived from Shewanella living in the deep-sea, which is a high pressure environment, so it could be that these proteins are more stable at high pressure than at atmospheric pressure, 0.1 MPa. This study, however, revealed that SBcytc and SVcytc were more stable at 0.1 MPa than at higher pressure. In addition, at 0.1–150 MPa, the stability of SBcytc and SVcytc was higher than that of homologues from atmospheric-pressure Shewanella, which was due to hydrogen bond formation with the heme in the former two proteins. This study further revealed that cytochrome c551 (PMcytc) of deep-sea Pseudomonas was more stable than a homologue of atmospheric-pressure Pseudomonas aeruginosa, and that specific hydrogen bond formation with the heme also occurred in the former. Although SBcytc and SVcytc, and PMcytc are phylogenetically very distant, these deep-sea cytochromes c are commonly stabilized through hydrogen bond formation.  相似文献   

12.
A new c-type cytochrome containing a single heme group, cytochrome c553(550) has been purified from Desulfovibrio desulfuricans (Norway strain) and some of its properties have been investigated. It has an isoelectric point of 6.6 and a higher redox potential than cytochrome c3 isolated from the same bacteria. Its molecular weight was estimated to be 9,200 by gel filtration. The main absorption peaks are at 553, 522.5 and 417 nm in the reduced form and at 690, 529, 411, 357 and 280 nm in the oxidized form. The asymmetric α band of the reduced state is similar to the one reported for socalled “split α” cytochromes c. The cytochrome contains 86 amino acid residues with 5 methionine, two cysteine and two histidine residues. The N terminal sequence of D. desulfuricans Norway cytochrome c553(550) presents no evident homology with that of Desulfovibrio vulgaris Hildenborough cytochrome c553.  相似文献   

13.
A bacterial cytochrome c peroxidase was purified from the obligate methanotroph Methylococcus capsulatus Bath in either the fully oxidized or the half reduced form depending on the purification procedure. The cytochrome was a homo-dimer with a subunit mol mass of 35.8 kDa and an isoelectric point of 4.5. At physiological temperatures, the enzyme contained one high-spin, low-potential (E m7 = –254 mV) and one low-spin, high-potential (E m7 = +432 mM ) heme. The low-potential heme center exhibited a spin-state transition from the penta-coordinated, high-spin configuration to a low-spin configuration upon cooling the enzyme to cryogenic temperatures. Using M. capsulatus Bath ferrocytochrome c 555 as the electron donor, the K M and V max for peroxide reduction were 510 ± 100 nM and 425 ± 22 mol ferrocytochrome c 555 oxidized min–1 (mole cytochrome c peroxidase)–1, respectively. Received: 6 January 1997 / Accepted: 27 May 1997  相似文献   

14.
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

15.
The cytochrome c553 from Desulfovibrio vulgaris (DvH c553) is of importance in the understanding of the relationship of structure and function of cytochrome c due to its lack of sequence homology with other cytochromes, and its abnormally low oxido-reduction potential. In evolutionary terms, this protein also represents an important reference point for the understanding of both bacterial and mitochondrial cytochromes c. Using the recently determined nuclear magnetic resonance (NMR) structure of the reduced protein we compare the structural, dynamic, and functional characteristics of DvH c553 with members of both the mitochondrial and bacterial cytochromes c to characterize the protein in the context of the cytochrome c family, and to understand better the control of oxido-reduction potential in electron transfer proteins. Despite the low sequence homology, striking structural similarities between this protein and representatives of both eukaryotic [cytochrome c from tuna (tuna c)] and prokaryotic [Pseudomonas aeruginosa c551 (Psa c551)] cytochromes c have been recognized. The previously observed helical core is also found in the DvH c553. The structural framework and hydrogen bonding network of the DvH c553 is most similar to that of the tuna c, with the exception of an insertion loop of 24 residues closing the heme pocket and protecting the propionates, which is absent in the DvH c553. In contrast, the Psa c551 protects the propionates from the solvent principally by extending the methionine ligand arm. The electrostatic distribution at the recognized encounter surface around the heme in the mitochondrial cytochrome is reproduced in the DvH c553, and corresponding hydrogen bonding networks, particularly in the vicinity of the heme cleft, exist in both molecules. Thus, although the cytochrome DvH c553 exhibits higher primary sequence homology to other bacterial cytochromes c, the structural and physical homology is significantly greater with respect to the mitochondrial cytochrome c. The major structural and functional difference is the absence of solvent protection for the heme, differentiating this cytochrome from both reference cytochromes, which have evolved different mechanisms to cover the propionates. This suggests that the abnormal redox potential of the DvH c553 is linked to the raised accessibility of the heme and supports the theory that redox potential in cytochromes is controlled by heme propionate solvent accessibility.  相似文献   

16.
 A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c 3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c 3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c 3. A similar study with D. vulgaris Hildenborough cytochrome c 553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c 3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases. Received: 14 April 1998 / Accepted: 25 June 1998  相似文献   

17.
Kinetics of electron transfer from soluble cytochrome c2 to the tetraheme cytochrome c have been measured in isolated reaction centers and in membrane fragments of the photosynthetic purple bacterium Rhodopseudomonas viridis by time-resolved flash absorption spectroscopy. Absorbance changes kinetics in the region of cytochrome -bands (540–560 nm) were measured at 21 °C under redox conditions where the two high-potential hemes (c-559 and c-556) of the tetraheme cytochrome were chemically reduced. After flash excitation, the heme c-559 donates an electron to the special pair of bacteriochlorophylls and is then re-reduced by heme c-556. The data show that oxidized heme c-556 is subsequently re-reduced by electron transfer from reduced cytochrome c2 present in the solution. The rate of this reaction has a non-linear dependence on the concentration of cytochrome c2, suggesting a (minimal) two-step mechanism involving the f ormation of a complex between cytochrome c2 and the reaction center, followed by intracomplex electron transfer. To explain the monophasic character of the reaction kinetics, we propose a collisional mechanism where the lifetime of the temporary complex is short compared to electron transfer. The limit of the halftime of the bimolecular process when extrapolated to high concentrations of cytochrome c2 is 60 ± 20 s. There is a large ionic strength effect on the kinetics of electron transfer from cytochrome c2 to heme c-556. The pseudofirst-order rate constant decreases from 1.1 × 107 M-1 s-1 to 1.3 × 106 M-1 s-1 when the ionic strength is increased from 1 to 1000 mM. The maximum rate (1.1 × 107 M-1 s-1) was obtained at about 1 mM ionic strength. This dependence of the rate on ionic strength s uggests that attractive electrostatic interactions contribute to the binding of cytochrome c2 with the tetraheme cytochrome. On the basis of our data and of previous molecular modelling, it is proposed that cytochrome c2 docks close to the low-potential heme c-554 and reduces heme c-556 via c-554.  相似文献   

18.
Mutants with defective respiratory nitrite utilization (Nir- phenotype) were obtained by transposon Tn5 insertion into genomic DNA of the ZoBell strain of Pseudomonas stutzeri. Three representative mutants were characterized with respect to their activities of nitrite and nitric oxide reduction, cytochrome cd 1 content, and pattern of soluble c-type cytochromes. Mutant strain MK201 over-produced cytochrome c 552 about fourfold by comparison with the wild type, but possessed an in vitro functional cytochrome cd 1. Mutant strain MK202 lacked cytochrome cd 1 and, simultaneously, had low amounts of cytochrome c 552 and the split -peak c-type cytochrome. Strain MK203 synthesized nitrite reductase defective in the heme d 1 prosthetic group. Irrespective of these biochemically distinct Nir- phenotypes, all mutants preserved the nitric oxidereducing capability of the wild type. The mutant characteristics demonstrate that cytochrome cd 1 is essential for nitrite respiration of P. stutzeri and establish the presence of a nitric oxide-reducing system distinct from cytochrome cd 1. They also indicate the functional or regulatory interdependence of c-type cytochromes.  相似文献   

19.
He-Wen Ma 《BBA》2008,1777(3):317-326
Protein domain movement of the Rieske iron-sulfur protein has been speculated to play an essential role in the bifurcated oxidation of ubiquinol catalyzed by the cytochrome bc1 complex. To better understand the electron transfer mechanism of the bifurcated ubiquinol oxidation at Qp site, we fixed the head domain of ISP at the cyt c1 position by creating an intersubunit disulfide bond between two genetically engineered cysteine residues: one at position 141 of ISP and the other at position 180 of the cyt c1 [S141C(ISP)/G180C(cyt c1)]. The formation of a disulfide bond between ISP and cyt c1 in this mutant complex is confirmed by SDS-PAGE and Western blot. In this mutant complex, the disulfide bond formation is concurrent with the loss of the electron transfer activity of the complex. When the disulfide bond is released by treatment with β-mercaptoethanol, the activity is restored. These results further support the hypothesis that the mobility of the head domain of ISP is functionally important in the cytochrome bc1 complex. Formation of the disulfide bond between ISP and cyt c1 shortens the distance between the [2Fe-2S] cluster and heme c1, hence the rate of intersubunit electron transfer between these two redox prosthetic groups induced by pH change is increased. The intersubunit disulfide bond formation also decreases the rate of stigmatellin induced reduction of ISP in the fully oxidized complex, suggesting that an endogenous electron donor comes from the vicinity of the b position in the cytochrome b.  相似文献   

20.
The photosynthetic reaction centers (RCs) classified as the group II possess a peripheral cytochrome (Cyt) subunit, which serves as the electron mediator to the special-pair. In the cycle of the photosynthetic electron transfer reactions, the Cyt subunit accepts electrons from soluble electron carrier proteins, and re-reduces the photo-oxidized special-pair of the bacteriochlorophyll. Physiologically, high-potential cytochromes such as the cytochrome c2 and the high-potential iron–sulfur protein (HiPIP) function as the electron donors to the Cyt subunit. Most of the Cyt subunits possess four heme c groups, and it was unclear which heme group first accepts the electron from the electron donor. The most distal heme to the special-pair, the heme-1, has a lower redox potential than the electron donors, which makes it difficult to understand the electron transfer mechanism mediated by the Cyt subunit. Extensive mutagenesis combined with kinetic studies has made a great contribution to our understanding of the molecular interaction mechanisms, and has demonstrated the importance of the region close to the heme-1 in the electron transfer. Moreover, crystallographic studies have elucidated two high-resolution three-dimensional structures for the RCs containing the Cyt subunit, the Blastochloris viridis and Thermochromatium tepidum RCs, as well as the structures of their electron donors. An examination of the structural data also suggested that the binding sites for both the cytochrome c2 and the HiPIP are located adjacent to the solvent-accessible edge of the heme-1. In addition, it is also indicated by the structural and biochemical data that the cytochrome c2 and the HiPIP dock with the Cyt subunit by different mechanisms although the two electron donors utilize the same region for the interactions; cytochrome c2 is recognized through electrostatic interactions while hydrophobic interactions are important in the HiPIP docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号