首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nouchi  Isamu  Hosono  Tatsuo  Sasaki  Kaori 《Plant and Soil》1997,195(2):233-245
Rice paddies emit not only methane but also several volatile sulfur compounds such as dimethyl sulfide (DMS: CH3SCH3). However, little is known about DMS emission from rice paddies. Fluxes of methane and DMS, and the concentrations of methane and several volatile sulfur compounds including hydrogen sulfide (H2S), carbonyl disulfide (CS2), methyl mercaptan (CH3SH) and DMS in soil water and flood water were measured in four lysimeter rice paddies (2.5 × 4 m, depth 2.0 m) once per week throughout the entire cultivation period in 1995 in Tsukuba, Japan. The addition of exogenous organic matter (rice straw) was also examined for its influence on methane or DMS emissions. Methane fluxes greatly differed between treatments in which rice straw had been incorporated into the paddy soil (rice straw plot) and plots without rice straw (mineral fertilizer plot). The annual methane emission from the rice straw plots (37.7 g m-2) was approximately 8 times higher than that from the mineral fertilizer plots (4.8 g m-2). Application of rice straw had little influence on DMS fluxes. Significant diurnal and seasonal changes in DMS fluxes were observed. Peak DMS fluxes were found around noon. DMS was emitted from the flood water in the early growth stage of rice and began to be emitted from rice plants during the middle stage. DMS fluxes increased with the growth of rice plants and the highest flux, 15.1 µg m-2 h-1, was recorded before heading. DMS in the soil water was negligible during the entire cultivation period. These facts indicate that the DMS emitted from rice paddies is produced by metabolic processes in rice plants. The total amount of DMS emitted from rice paddies over the cultivated period was estimated to be approximately 5–6 mg m-2. CH3SH was emitted only from flood water during the first month after flooding.  相似文献   

2.
Methane emission from rice grown in flooded soil was measured in pot experiments using headspaces with different gas composition. The emission rates varied with the atmospheric composition. Based on the kinetic theory of gases the binary diffusion coefficients for methane in various gases were calculated. The ratios of the measured emissions under a certain atmosphere relative to that in air were similar to the ratios of the binary diffusion coefficients showing that plant-mediated CH4 transport is driven by diffusion. Small deviations from the theoretical ratios of emissions support the hypothesis that mass flow of gas to the submerged parts of the rice plant may depress the upward diffusive CH4 flux. The results in combination with data from the literature suggest that the rate limiting step in plant-mediated methane transport is diffusion of CH4 across the root/shoot junction.  相似文献   

3.
Cultivar variation in methane efflux from tropical rice   总被引:3,自引:0,他引:3  
Satpathy  S.N.  Mishra  S.  Adhya  T.K.  Ramakrishnan  B.  Rao  V.R.  Sethunathan  N. 《Plant and Soil》1998,202(2):223-229
Wide variation in CH4 flux was noticed among the ten rice cultivars grown under uniform field conditions. Cumulative CH4 flux ranged from 4.61 g m-2 to 20.25 g m-2. The rice cultivars could be ranked into three groups based on their CH4 flux potential. Rice cultivars could also be arranged based on their peak CH4 emission occurring either at vegetative, reproductive or at both growth stages. Of the several variables studied (root region redox potential, above- and underground biomass, grain and straw yield, duration of the crop, percent area occupied by the air space and root oxidase activity), only oxidase activity of the root tip exhibited a significant (negative) correlation with CH4 flux indicating an indirect effect of root oxidation potential on CH4 flux. Data presented in this study, demonstrate inherent variation in CH4 flux among different rice cultivars that can be used for developing future mitigation options.  相似文献   

4.
Influence of soil temperature on methane emission from rice paddy fields   总被引:18,自引:2,他引:16  
Methane emission rates from an Italian rice paddy field showed diel and seasonal variations. The seasonal variations were not closely related to soil temperatures. However, the dieL changes of CH4 fluxes were significantly correlated with the diel changes of the temperature in a particular soil depth. The soil depths with the best correlations between CH4 flux and temperature were shallow (1–5cm) in May and June, deep (10–15cm) in June and July, and again shallow (1–5 cm) in August. Apparent activation energies (Ea) calculated from these correlations using the Arrhenius model were relatively low (50–150 kJ mol–1) in May and June, but increased to higher values (80–450 kJ mol–1) in August. In the laboratory, CH4 emission from two rice cultures incubated at temperatures between 20 and 38°C showed E . values of 41 and 53 kJ mol–1) Methane production in anoxic paddy soil suspensions incubated between 7 and 43°C showed E values between 53 and 132 kJ mol–1 with an average value of 85 kJ mol–1) and in pure cultures of hydrogenotrophic methanogenic bacteria E a values between 77 and 173 (average 126) kJ mol–1. It is suggested that diel changes of soil properties other than temperature affect CH4 emission rates, e.g. diel changes in root exudation or in efficiency of CH4 oxidation in the rhizosphere.  相似文献   

5.
Huang Y  Zhang W  Zheng X H  Han S H  Yu Y Q 《农业工程》2006,26(4):980-987
Methane is one of the principal greenhouse gases. Irrigated rice paddies are recognized as contributing to atmospheric methane concentration. Methane emissions from rice paddies are among the most uncertain estimates in rice-growing countries. Efforts have been made over the last decade to estimate CH4 emissions from Chinese rice paddies via the model method. However, these estimates are very vague due to different models and upscaling methods. A reduction in these uncertainties may be achieved by coupling field-scale models with regional databases. The objective of this article is to develop a methodology of coupling a CH4 emission model with regional databases by which CH4 emissions from Chinese rice paddies can then be estimated. CH4MOD, a model for simulating CH4 emissions from rice paddies with minimal input by using commonly available parameters, is of great potential in terms of upscaling as it has provided a realistic estimate of the observed results from various soils, climates and agricultural practices. By linking spatial databases to CH4MOD, CH4 emissions from Chinese rice paddies in the 2000 rice-growing season were simulated on a day-by-day basis. The spatial databases were created by GIS with a spatial resolution of 10km10km, including soil sand percentage, amounts of crop straw and roots from the previous season and farm manure, the water management pattern, dates of rice transplanting and harvesting, acreage of rice planted, rice grain yield and daily air temperature. ARCGIS software was used to meet all GIS needs, including data access, projection definition, overlaying of different vector layers, creation of grids (a raster format of ARCGIS software) by converting vector data, and the data conversion between grids and ASCII formats. Methane emissions from rice paddies in mainland China in the 2000 rice-growing season were estimated to be 6.02 Tg (1 Tg = 109 kg). Of the total, approximately 49% (2.93Tg) is emitted during the single rice-growing season, and 27% (1.63Tg) and 24% (1.46Tg) are from the early and late rice-growing seasons respectively. It was concluded that regional CH4 emissions from rice paddies could be estimated by coupling CH4MOD with regional databases with a high spatial resolution. A further effort should be made to improve the quality of the spatial databases, especially in terms of the amount of added organic matter and the water regime. It is also necessary to evaluate the uncertainties of the present estimates in order to improve the overall accuracy.  相似文献   

6.
Methane is one of the principal greenhouse gases. Irrigated rice paddies are recognized as contributing to atmospheric methane concentration. Methane emissions from rice paddies are among the most uncertain estimates in rice-growing countries. Efforts have been made over the last decade to estimate CH4 emissions from Chinese rice paddies via the model method. However, these estimates are very vague due to different models and upscaling methods. A reduction in these uncertainties may be achieved by coupling field-scale models with regional databases. The objective of this article is to develop a methodology of coupling a CH4 emission model with regional databases by which CH4 emissions from Chinese rice paddies can then be estimated. CH4MOD, a model for simulating CH4 emissions from rice paddies with minimal input by using commonly available parameters, is of great potential in terms of upscaling as it has provided a realistic estimate of the observed results from various soils, climates and agricultural practices. By linking spatial databases to CH4MOD, CH4 emissions from Chinese rice paddies in the 2000 rice-growing season were simulated on a day-by-day basis. The spatial databases were created by GIS with a spatial resolution of 10km×10km, including soil sand percentage, amounts of crop straw and roots from the previous season and farm manure, the water management pattern, dates of rice transplanting and harvesting, acreage of rice planted, rice grain yield and daily air temperature. ARCGIS software was used to meet all GIS needs, including data access, projection definition, overlaying of different vector layers, creation of grids (a raster format of ARCGIS software) by converting vector data, and the data conversion between grids and ASCII formats. Methane emissions from rice paddies in mainland China in the 2000 rice-growing season were estimated to be 6.02 Tg (1 Tg = 109 kg). Of the total, approximately 49% (2.93Tg) is emitted during the single rice-growing season, and 27% (1.63Tg) and 24% (1.46Tg) are from the early and late rice-growing seasons respectively. It was concluded that regional CH4 emissions from rice paddies could be estimated by coupling CH4MOD with regional databases with a high spatial resolution. A further effort should be made to improve the quality of the spatial databases, especially in terms of the amount of added organic matter and the water regime. It is also necessary to evaluate the uncertainties of the present estimates in order to improve the overall accuracy.  相似文献   

7.
稻田甲烷排放模型研究——模型及其修正   总被引:6,自引:3,他引:6  
张稳  黄耀  郑循华  李晶  于永强 《生态学报》2004,24(11):2347-2352
在过去十多年内 ,关于稻田甲烷排放的模拟已经进行了不少有益的探索并且开发出了数个有关的模型。模型的成功研制是准确定量估计不同区域范围内稻田甲烷排放的前提。以往大部分模型由于模拟精度不高 ,或者是其要求太多的输入参数 ,因而限制了它在大尺度范围内的广泛应用。在一个比较成熟的模型基础上 ,进行了必要的修正与扩充。增加了稻田甲烷通过气泡方式排放的模拟模块 ,并修正了原模型中关于土壤氧化还原电位变化的模拟 ,使之能适应于多种稻田水管理方式。新修正的模型 (CH4 MOD)不仅保留了原模型输入参数较少和易于获得的优点 ,而且能适应多种水稻耕作方式 ,这为进一步利用模型技术准确估计大尺度区域稻田甲烷排放提供了一种新的科学方法  相似文献   

8.
Hosono  Tatsuo  Nouchi  Isamu 《Plant and Soil》1997,195(1):65-73
Ebullition of gas bubbles from the soil surface is, in some cases (e.g., in early growth stage of rice), one of the major pathways for methane transport from rice paddies to the atmosphere. However, the role of the gas phase (entrapped gas) in the paddy soil in plant-mediated methane transport, which is the major pathway for methane emission, has not been clarified. To clarify the effect of the gas phase below ground on the methane emission rate through rice plants, we partly exposed the root and stem base of hydroponically grown rice to a high concentration of methane gas at various gas pressures, and immersed the rest of the roots in a solution with a high methane concentration. The methane emission rate was measured from the top of the rice plant using a flow-through chamber method. The methane emission rate drastically increased with a small increase in gas pressure in the gas phase at the root and stem base zone, with about a 3 times larger emission rate being observed with 10 × 10-3 atm of extra pressure (corresponding to 10 cm of standing water in rice paddy) compared to no extra pressure. However, when alginate was applied to the stem near the base to prevent contact with the gas phase, the methane emission rate did not increase with increasing gas pressure. On the other hand, from observations in the rice paddy, it was found that the gas is entrapped near the surface (e.g., at a depth of 1 cm) and the gas entrapped in the soil would come into direct contact with a part of the stem near the base of the rice plant. Thus, the gas entrapped in the soil could enter into the rice body directly from the part of the stem near the base which is beneath the soil surface due to gas pressure in the gas phase resulting from the pressure exerted by the standing water. Hence, this mechanism involving the entrapped gas could play an important role in methane emission from rice paddy by affecting the plant-mediated methane transport as well as ebullition of gas bubbles.  相似文献   

9.
Hosono  Tatsuo  Nouchi  Isamu 《Plant and Soil》1997,191(2):233-240
Large diurnal and seasonal variations in methane flux from rice paddies have been found in many studies. Although these variations are considered to result from changes in methane formation rates in the soil and the transport capacity (e.g. biomass, physiological activities, and so on) of rice plants, the real reasons for such variations are as yet unclear. This study was conducted to clarify the effects of temperature on the rate of methane transport from the root zone to the atmosphere using hydroponically grown rice plants. Methane emission rates from the top of the rice plants whose roots were soaked in a solution with a high methane concentration were measured using a flow-through chamber method with the top or root of the rice plants being kept at various temperatures. The methane emission rates and methane concentrations in solution were analyzed using a diffusion model which assumes that the methane emission from a rice paddy is driven by molecular diffusion through rice plants by a concentration gradient. In the experiment where the temperature around the root was changed, the conductance for methane diffusion was typically 2.0-2.2 times larger when the solution temperature was changed from 15 to 30 °C. When the air temperature surrounding the top of the rice plant was changed, the change in conductance was much less. In addition, from measurements of methane flux and methane concentration in soil water in a lysimeter rice paddy during the 2 growing seasons of rice, it was found that the conductance for methane transport was correlated with the soil temperature at 5 cm depth. These results suggest that the temperature around the root greatly affects the methane transport process in rice plants, and that the process of passing through the root is important in determining the rate of methane transport through rice plants.  相似文献   

10.
稻田秸秆还田:土壤固碳与甲烷增排   总被引:38,自引:0,他引:38  
基于我国农田土壤有机质长期定位试验和稻田甲烷排放试验成果,将全国稻田划分为单季区和双季区.根据土壤有机质试验数据,分析了秸秆还田在我国两个稻田区的单季稻田、水旱轮作稻田和双季稻田的固碳潜力.同时根据我国稻田甲烷排放试验数据,采用取平均排放系数的方法,估算了我国稻田在无秸秆还田情况下的甲烷排放总量;结合IPCC推荐的方法和参数,估算了我国稻田秸秆还田后甲烷排放总量及增排甲烷的全球增温潜势.结果表明:在中国稻田推广秸秆还田的固碳潜力为10.48TgC.a-1,对减缓全球变暖的贡献为38.43TgCO2-eqv.a-1;但秸秆还田后稻田甲烷排放将从无秸秆还田的5.796Tg.a-1增加到9.114Tg.a-1;秸秆还田引起甲烷增排3.318Tg.a-1,其全球增温潜势达82.95TgCO2-eqv.a-1,为土壤固碳减排潜力的2.158倍.可见,推广秸秆还田后,中国稻田增排甲烷的温室效应会大幅抵消土壤固碳的减排效益,是一项重要的温室气体泄漏.  相似文献   

11.
To determine how elevated night temperature interacts with carbon dioxide concentration ([CO2]) to affect methane (CH4) emission from rice paddy soil, we conducted a pot experiment using four controlled‐environment chambers and imposed a combination of two [CO2] levels (ambient: 380 ppm; elevated: 680 ppm) and two night temperatures (22 and 32 °C). The day temperature was maintained at 32 °C. Rice (cv. IR72) plants were grown outside until the early‐reproductive growth stage and then transferred to the chambers. After onset of the treatment, day and night CH4 fluxes were measured every week. The CH4 fluxes changed significantly with the growth stage, with the largest fluxes occurring around the heading stage in all treatments. The total CH4 emission during the treatment period was significantly increased by both elevated [CO2] (P=0.03) and elevated night temperature (P<0.01). Elevated [CO2] increased CH4 emission by 3.5% and 32.2% under high and low night temperature conditions, respectively. Elevated [CO2] increased the net dry weight of rice plants by 12.7% and 38.4% under high and low night temperature conditions, respectively. These results imply that increasing night temperature reduces the stimulatory effect of elevated [CO2] on both CH4 emission and rice growth. The CH4 emission during the day was larger than at night even under the high‐night‐temperature treatment (i.e. a constant temperature all day). This difference became larger after the heading stage. We observed significant correlations between the night respiration and daily CH4 flux (P<0.01). These results suggest that net plant photosynthesis contributes greatly to CH4 emission and that increasing night temperature reduces the stimulatory effect of elevated [CO2] on CH4 emission from rice paddy soil.  相似文献   

12.
Rice variety is one of the key factors regulating methane (CH4) production and emission from the paddy fields. However, the relationships between rice varieties and populations of microorganisms involved in CH4 dynamics are poorly understood. Here we investigated CH4 dynamics and the composition and abundance of CH4‐producing archaea and CH4‐oxidizing bacteria in a Chinese rice field soil planted with three types of rice. Hybrid rice produced 50–60% more of shoot biomass than Indica and Japonica cultivars. However, the emission rate of CH4 was similar to Japonica and lower than Indica. Furthermore, the dissolved CH4 concentration in the rhizosphere of hybrid rice was markedly lower than Indica and Japonica cultivars. The rhizosphere soil of hybrid rice showed a similar CH4 production potential but a higher CH4 oxidation potential compared with the conventional varieties. Terminal restriction fragment length polymorphism analysis of the archaeal 16S rRNA genes showed that the hydrogenotrophic methanogens dominated in the rhizosphere whereas acetoclastic methanogens mainly inhabited the bulk soil. The abundance of total archaea as determined by quantitative (real‐time) PCR increased in the later stage of rice growth. However, rice variety did not significantly influence the structure and abundance of methanogenic archaea. The analysis of pmoA gene fragments (encoding the α‐subunit of particulate methane monooxygenase) revealed that rice variety also did not influence the structure of methanotrophic proteobacteria, though variable effects of soil layer and sampling time were observed. However, the total copy number of pmoA genes in the rhizosphere of hybrid rice was approximately one order of magnitude greater than the two conventional cultivars. The results suggest that hybrid rice stimulates the growth of methanotrophs in the rice rhizosphere, and hence enhances CH4 oxidation which attenuates CH4 emissions from the paddy soil. Hybrid rice is becoming more and more popular in Asian countries. The present study demonstrated that planting of hybrid rice will not enhance CH4 emissions albeit a higher grain production than the conventional varieties.  相似文献   

13.
Methane oxidation associated with submersed vascular plants andits effects on diffusive CH4 release from plants wereexamined through a series of laboratory and field incubationexperiments. In laboratory analyses, measured rates of epiphyticoxidation (i.e., oxidation associated with aboveground tissues) rangedfrom 0.3 to 32.9 pmol mm–2 plant tissueh–1 with significant CH4 consumptionassociated with basal (i.e., near sediment) leaves and stems for all sixspecies tested. Basal stem tissue also showed greater oxidation activitythan basal leaves. Oxidation activity for washed roots of threesubmersed species ranged from 0.18 to 7.01 µmolg–1 root ash-free dry mass h–1 withhigher rates associated with two rhizomatous/stoloniferous speciesthan with a non-rhizomatous one. In field incubations of a singlespecies (Myriophyllum exalbescens), intact plants showed netCH4 consumption during the day and net release at night. Whena specific inhibitor of CH4 oxidation was applied (methylfluoride – MF), net daytime release from plants was observed andnighttime flux increased, indicating that diffusive CH4release from submersed plants is significantly curtailed by the activityof epiphytic methanotrophs.  相似文献   

14.
不同土壤水分含量下高寒草地CH4释放的比较研究   总被引:9,自引:0,他引:9  
2003年6月30日~9月4日,利用密闭箱-气相色谱法,对发育于不同水分状况下的灌丛草甸(GC)、矮嵩草草甸(AC)、藏嵩草草甸(ZC)和季节性湿地(SD)的CH4释放速率进行了比较研究.结果表明,观测期间,季节性湿地处于淹水状态,其它三种土壤平均水分含量分别为39.6%(GC)、38.4%(AC)、65.9%(ZC),而CH4平均释放速率分别为-0.031±0.030(GC)、-0.026±0.018(AC)、1.103±0.240(ZC)和6.922±4.598 mg·m-2·h-1(SD),随着土壤水分含量的增加,高寒草地土壤CH4释放由吸收转为排放,表现出与土壤湿度很好的一致性.矮嵩草草甸不同处理CH4吸收强度AC<AJ<AL,它们之间的差异除与土壤水分有关,还可能与处理引起的CH4传输途径不同有关.实验期间,矮嵩草草甸和灌丛草甸土壤-植物系统分别吸收CH438.69和46.13 mg·m-2,是大气温室气体CH4的弱汇,藏嵩草草甸和季节性湿地则是大气温室气体CH4的源,分别排放CH4 1.641和10.30 g·m-2.  相似文献   

15.
控释氮肥对抗除草剂转基因水稻田土壤甲烷排放的影响   总被引:3,自引:0,他引:3  
周文鳞  娄运生 《生态学报》2014,34(16):4555-4560
采用温室盆栽和静态箱-气相色谱法,研究了控释氮肥对抗除草剂转基因水稻和亲本常规水稻稻田土壤甲烷(CH4)排放的影响。供试土壤为潴育型水稻土,氮肥种类为尿素和控释氮肥。结果表明,与对照(尿素)相比,控释氮肥提高了水稻分蘖数、株高、生物量及产量。水稻品种对CH4季节性排放规律没有明显影响,CH4排放通量基本表现为,自水稻移栽后逐渐升高,移栽后62—92 d出现峰值,而后逐渐降低至水稻收获。与对照相比,控释氮肥可显著降低CH4排放通量和全生育期累积排放量。抗除草剂转基因水稻稻田土壤CH4排放通量和累积排放量均显著低于亲本常规水稻。研究认为,一次性基施控释氮肥和种植抗除草剂转基因水稻对有效减缓稻田甲烷排放具有重要意义。  相似文献   

16.
Production, oxidation and emission of methane in rice paddies   总被引:15,自引:0,他引:15  
Abstract Production and emission of methane from submerged paddy soil was studied in laboratory rice cultures and in Italian paddy fields. Up to 80% of the CH4 produced in the paddy soil did not reach the atmosphere but was apparently oxidized in the rhizosphere. CH4 emission through the rice plants was inhibited by an atmosphere of pure O2 but was stimulated by an atmosphere of pure N2 or an atmosphere containing 5% acetylene. Gas bubbles taken from the submerged soil contained up to 60% CH4, but only < 1% CH4 after the bubbles had passed the soil-water interface or had entered the intercellular gas space system of the rice plants. CH4 oxidation activities were detected in the oxic surface layer of the submerged paddy soil. Flooding the paddy soil with water containing > 0.15% sea salt (0.01% sulfate) resulted in a strong inhibition of the rates of methanogenesis and a decrease in the rates of CH4 emission. This result explains the observation of relatively low CH4 emission rates in rice paddy areas flooded with brackish water.  相似文献   

17.
UV-B辐射增强对抗除草剂转基因水稻 CH4排放的影响   总被引:2,自引:0,他引:2  
娄运生  周文鳞 《生态学报》2012,32(15):4731-4736
在大田条件下,研究了UV-B(ultraviolet-B)辐射增强对抗除草剂转基因水稻及亲本常规水稻甲烷(CH4)排放的影响。UV-B辐射设2水平,即对照(CK,自然光),增强(Elevated,14.4 kJ·m-·2d-1),相当于南京地区大气臭氧耗损25%的辐射剂量。结果表明,UV-B辐射增强并没有改变稻田CH4排放通量的季节性变化规律。与对照相比,UV-B辐射增强显著提高CH4排放通量和累积排放量。水稻分蘖期CH4累积排放量最高,占全生育累积排放量的51.55%—61.01%;其次是拔节至孕穗期,占20.00%—26.64%。抗除草剂转基因水稻的CH4排放通量和累积排放量显著低于亲本常规水稻。研究说明,UV-B辐射增强下种植抗除草剂转基因水稻对于减缓稻田甲烷排放有积极意义。  相似文献   

18.
高产水稻品种及种植方式对稻田甲烷排放的影响   总被引:4,自引:0,他引:4  
傅志强  黄璜  谢伟  何保良 《应用生态学报》2009,20(12):3003-3008
采用大田试验研究了不同水稻品种(早稻:超级稻“陆两优996”和常规稻“创丰1号”;晚稻:T优259)及不同种植方式(直播和移栽)对稻田甲烷排放通量的影响.结果表明:早稻晒田前甲烷排放量占排放总量的52%~73%,排水晒田减少了甲烷排放通量;晚稻生育前期甲烷排放量占生长期间甲烷排放总量的70%.早稻直播方式的甲烷排放通量均值低于移栽种植方式,但甲烷排放总量大于移栽种植方式;晚稻直播方式的甲烷排放通量均值与排放总量都大于移栽种植方式.早、晚稻直播方式的单位稻谷甲烷排放量与移栽种植方式间均存在显著差异,早稻中超级稻和常规稻直播方式的单位稻谷甲烷排放量分别比移栽方式高4.84和3.48 g·kg-1稻谷,常规稻的甲烷排放量高于超级稻;晚稻直播方式的单位稻谷甲烷排放量比移栽方式高6.67 g·kg-1稻谷.相同面积、相同时间不同种植方式的稻田甲烷排放量、单位经济产量甲烷排放量表现为:早稻:常规稻直播>常规稻移栽>超级稻直播>超级稻移栽;晚稻:直播>移栽.  相似文献   

19.
Genotypic and environmental (soil water regime and N level) variation in carbon isotope discrimination (CID) in relation to the gas exchange, transpiration efficiency (A/T), and biomass production were investigated in field experiments using eleven rice (Oryza sativa L.) genotypes. The results showed that genotype was more dominant for variation in CID than in total biomass. Genotypic ranking in CID was consistent across environments because of small genotype × environment interactions. Japonica genotypes tended to have lower CID than indica genotypes. Higher soil water and lower N rate significantly increased CID. Variation in CID was slightly smaller for water regime than for genotype. There was a negative correlation between CID andA/T among genotypes within water regimes. Genotypic variation in CID was associated mainly with variation in stomatal conductance under all soil water regimes and with photosynthetic capacity in late growth stages under aerobic soil conditions. The decrease in CID at higher N was probably due to lower stomatal conductance under aerobic soil conditions and to higher photosynthetic rates under submerged soil conditions. The correlation between biomass and CID was not clear in aerobic soil, whereas it was positive in submerged soil, which indicated that the significance of lower or higher CID for improving biomass productivity may differ under different soil water regimes. Overall, the results implied a possible use of CID as a selection criterion for genotypic improvement inA/T and productivity in rice.  相似文献   

20.
Satpathy  S.N.  Rath  A.K.  Ramakrishnan  B.  Rao  V.R.  Adhya  T.K.  Sethunathan  N. 《Plant and Soil》1997,195(2):267-271
Diurnal variation in CH4 efflux from continuously flooded fields planted to rice (Oryza sativa L. cv. IR-36) was examined at different crop growth stages using a closed chamber method during the wet season. CH4 emission showed a distinct diurnal pattern especially at tillering, panicle initiation and maturity stages of a field-grown rice crop, with maximum emission in the early afternoon (12.00 to 15.00) followed by a decline to a minimum around midnight. Among several variables (ambient temperature, flood water temperature, redox potential, soil pH, and root oxidase activity), a significant negative correlation existed between oxidase activity of the root base and diurnal fluctuations in CH4 efflux at tillering stage. Evidence also suggested that redox status in the rhizosphere region and atmospheric, soil, and water temperatures influenced CH4 emission from rice fields probably by their contrasting effects on CH4 production and oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号