首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The processing of phagosomes containing Legionella pneumophila and Escherichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22 degrees C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. Electron micrographs showed no evidence of degradation of L. pneumophila cells through 12 h, while E. coli cells in the process of being digested were observed in vacuoles 75 min after the addition of the bacterium. T. vorax ingested L. pneumophila normally, but by 10 to 15 min, the vacuolar membrane appeared denser than that surrounding nascent or newly formed phagosomes. In older vacuoles, electron-dense particles lined portions of the membrane. Acidification of the phagosomes indicated by the accumulation of neutral red was similar in T. vorax containing L. pneumophila or E. coli. This ciliate could provide a model for the analysis of virulence-associated intracellular events independent of the replication of L. pneumophila.  相似文献   

2.
《The Journal of cell biology》1984,99(6):1936-1943
We used quantitative fluorescence microscopy to measure the pH of phagosomes in human monocytes that contain virulent Legionella pneumophila, a bacterial pathogen that multiplies intracellularly in these phagocytes. The mean pH of phagosomes that contain live L. pneumophila was 6.1 in 14 experiments. In the same experiments, the mean pH of phagosomes containing dead L. pneumophila averaged 0.8 pH units lower than the mean pH of phagosomes containing live L. pneumophila, a difference that was highly significant (P less than 0.01 in all 14 experiments). In contrast, the mean pH of phagosomes initially containing live E. coli, which were then killed by monocytes, was the same as for phagosomes initially containing dead E. coli. The mean pH of L. pneumophila phagosomes in activated monocytes, which inhibit L. pneumophila intracellular multiplication, was the same as in nonactivated monocytes. To simultaneously measure the pH of different phagosomes within the same monocyte, we digitized and analyzed fluorescence images of monocytes that contained both live L. pneumophila and sheep erythrocytes. Within the same monocyte, live L. pneumophila phagosomes had a pH of approximately 6.1 and sheep erythrocyte phagosomes had a pH of approximately 5.0 or below. This study demonstrates that L. pneumophila is capable of modifying the pH of its phagocytic vacuole. This capability may be critical to the intracellular survival and multiplication of this and other intracellular pathogens.  相似文献   

3.
Legionella pneumophila survives within macrophages by evading phagosome–lysosome fusion. To determine whether L. pneumophila resides in an intermediate endosomal compartment or is isolated from the endosomal pathway and to investigate what bacterial factors contribute to establishment of its vacuole, we applied a series of fluorescence microscopy assays. The majority of vacuoles, aged 2.5 min to 4 h containing post-exponential phase (PE) L. pneumophila , appeared to be separate from the endosomal pathway, as judged by the absence of transferrin receptor, LAMP-1, cathepsin D and each of four fluorescent probes used to label the endocytic pathway either before or after infection. In contrast, more than 70% of phagosomes that contained Escherichia coli , polystyrene beads, or exponential phase (E) L. pneumophila matured to phagolysosomes, as judged by co-localization with LAMP-1, cathepsin D and fluorescent endosomal probes. Surprisingly, neither bacterial viability nor the putative Dot/Icm transport complex was absolutely required for vacuole isolation; although phagosomes containing either formalin-killed PE wild-type or live PE dotA or dotB mutant L. pneumophila rapidly accumulated LAMP-1, less than 20% acquired lysosomal cathepsin D or fluorescent endosomal probes. Therefore, a Dot-dependent factor(s) isolates the L. pneumophila phagosome from a LAMP-1-containing compartment, and a formalin-resistant Dot-independent activity inhibits vacuolar accumulation of endocytosed material and delivery to the degradative lysosomes.  相似文献   

4.
The freshwater ciliate Tetrahymena sp. efficiently ingested, but poorly digested, virulent strains of the gram-negative intracellular pathogen Legionella pneumophila. Ciliates expelled live legionellae packaged in free spherical pellets. The ingested legionellae showed no ultrastructural indicators of cell division either within intracellular food vacuoles or in the expelled pellets, while the number of CFU consistently decreased as a function of time postinoculation, suggesting a lack of L. pneumophila replication inside Tetrahymena. Pulse-chase feeding experiments with fluorescent L. pneumophila and Escherichia coli indicated that actively feeding ciliates maintain a rapid and steady turnover of food vacuoles, so that the intravacuolar residence of the ingested bacteria was as short as 1 to 2 h. L. pneumophila mutants with a defective Dot/Icm virulence system were efficiently digested by Tetrahymena sp. In contrast to pellets of virulent L. pneumophila, the pellets produced by ciliates feeding on dot mutants contained very few bacterial cells but abundant membrane whorls. The whorls became labeled with a specific antibody against L. pneumophila OmpS, indicating that they were outer membrane remnants of digested legionellae. Ciliates that fed on genetically complemented dot mutants produced numerous pellets containing live legionellae, establishing the importance of the Dot/Icm system to resist digestion. We thus concluded that production of pellets containing live virulent L. pneumophila depends on bacterial survival (mediated by the Dot/Icm system) and occurs in the absence of bacterial replication. Pellets of virulent L. pneumophila may contribute to the transmission of Legionnaires' disease, an issue currently under investigation.  相似文献   

5.
Numerous intracellular bacterial pathogens modulate the nature of the membrane-bound compartment in which they reside, although little is known about the molecular basis for this control. Legionella pneumophila is a bacterial pathogen able to grow within human alveolar macrophages and residing in a phagosome that does not fuse with lysosomes. This study demonstrates that the dotA product is required to regulate trafficking of the L. pneumophila phagosome. Phagosomes containing L. pneumophila dotA + bacteria exhibited differential trafficking profiles when compared with isogenic dotA mutants. Phagosomes containing dotA mutants showed rapid accumulation of the lysosomal glycoprotein LAMP-1 as early as 5 min after uptake, whereas the majority of wild-type L. pneumophila phagosomes did not acquire LAMP-1. The association of LAMP-1 with phagosomes containing dotA mutant bacteria was concomitant with the appearance of the small GTP-binding protein Rab7 on the vacuolar membrane. These data demonstrate that phagosomes containing replication-competent L. pneumophila evade early endocytic fusion events. In contrast, the kinetics of LAMP-1 and Rab7 association indicate that the dotA mutants are routed along a well-characterized endocytic pathway leading to fusion with lysosomes. Genetic studies show that L. pneumophila requires DotA expression before macrophage uptake in order to establish an intracellular site for replication. However, the bacteria do not appear to require continuous expression of the DotA protein to maintain a replicative phagosome. These data indicate that DotA is one factor that plays a fundamental role in regulating initial phagosome trafficking decisions either upon or immediately after macrophage uptake.  相似文献   

6.
Interspecific complementation of an Escherichia coli recA mutant with a Legionella pneumophila genomic library was used to identify a recombinant plasmid encoding the L. pneumophila recA gene. Recombinant E. coli strains harbouring the L. pneumophila recA gene were isolated by replica-plating bacterial colonies on medium containing methyl methanesulphonate (MMS). MMS-resistant clones were identified as encoding the L. pneumophila recA analogue by their ability to protect E. coli HB101 from UV exposure and promote homologous recombination. Subcloning of selected restriction fragments and Tn5 mutagenesis localized the recA gene to a 1.7 kb Bg/II-EcoRI fragment. Analysis of minicell preparations harbouring a 1.9 kb EcoRI fragment containing the recA coding segment revealed a single 37.5 kDa protein. Insertional inactivation of the cloned recA gene by Tn5 resulted in the disappearance of the 37.5 kDa protein, concomitant with the loss of RecA function. The L. pneumophila recA gene product did not promote induction of a lambda lysogen; instead, the presence of the heterologous recA gene caused a significant reduction in spontaneous and mitomycin-C-induced prophage induction in recA+ and recA E. coli backgrounds. Despite the lack of significant genetic homology between the L. pneumophila recA gene and the E. coli counterpart, the L. pneumophila RecA protein was nearly identical to that of E. coli in molecular mass, and the two proteins showed antigenic cross-reactivity. Western blot analysis of UV-treated L. pneumophila revealed a significant increase in RecA antigen in irradiated versus control cells, suggesting that the L. pneumophila recA gene is regulated in a manner similar to that of E. coli recA.  相似文献   

7.
Legionella pneumophila is an intracellular parasite of protozoa and human phagocytes. To examine adaptation of this bacterium to parasitize protozoa, the sequence of events of the intracellular infection of the amoeba Hartmannella vermiformis was examined. The previously described uptake phenomenon of coiling phagocytosis by human monocytes was not detected. A 1 h postinfection with wild-type strain AA100, mitochondria were observed within the vicinity of the phagosome. At 2.5 h postinfection, numerous vesicles surrounded the phagosomes and mitochondria were in close proximity to the phagosome. At 5 h postinfection, the bacterium was surrounded by a ribosome-studded multilayer membrane. Bacterial multiplication was evident by 8 h postinfection, and the phagosome was surrounded by a ribosome-studded multilayer membrane until 15 h postinfection. The recruitment of organelles and formation of the ribosome-studded phagosome was defective in an isogenic attenuated mutant of L. pneumophila (strain AA101A) that failed to replicate within amoebae. At 20 h postinfection with wild-type strain AA100, numerous bacteria were present in the phagosome and ribosome were not detected around the phagosome. These data showed that, at the ultrastructural level, the intracellular infection of protozoa by L. pneumophila is highly similar to that of infection of macrophages. Immunocytochemical studies provided evidence that at 5 h postinfection the phagosome containing L. pneumophila acquired an abundant amount of the endoplasmic reticulum-specific protein (BiP). Similar to phagosomes containing heat-killed wild-type L. pneumophila, the BiP protein was not detectable in phagosomes containing the mutant strain AA101A. In addition to the absence of ribosomes and mitochondria, the BiP protein was not detected in the phagosomes at 20 h postinfection with wild-type L. pneumophila. The data indicated that the ability of L. pneumophila to establish the intracellular infection of amoebae is dependent on its capacity to reside and multiply within a phagosome surrounded by the rough endoplasmic reticulum. This compartment may constitute a rich source of nutrients for the bacteria and is probably recognized as cellular compartment. The remarkable similarity of the intracellular infections of macrophages and protozoa by L. pneumophila strongly supports the hypothesis that adaptation of the bacterium to the intracellular environment of protozoa may be the mechanism for its ability to adapt to the intracellular environment of human alveolar macrophages and causes pneumonia.  相似文献   

8.
The natural hosts of the bacterial pathogen Legionella pneumophila are amoebae and protozoa. In these hosts, as in human macrophages, the pathogen enters the cell through phagocytosis, then rapidly modifies the phagosome to create a compartment that supports its replication. We have examined L. pneumophila entry and behaviour during early stages of the infection of Dictyostelium discoideum amoebae. Bacteria were labelled with a red fluorescent marker, and selected proteins and organelles in the host were labelled with GFP, allowing the dynamics and interactions of L. pneumophila -containing phagosomes to be tracked in living cells. These studies demonstrated that entry of L. pneumophila is an actin-mediated process, that the actin-binding protein coronin surrounds the nascent phagosome but dissociates immediately after internalization, that ER membrane is not incorporated into a phagosome during uptake, that the newly internalized phagosome is rapidly transported about the cell on microtubules, that association of ER markers with the phagosome occurs in two steps that correlate with distinct changes in phagosome movement, and that the vacuolar H(+)-ATPase does not associate with mature replication vacuoles. These studies have clarified certain aspects of the infection process and provided new insights into the dynamic interactions between the pathogen and its host.  相似文献   

9.
Legionella pneumophila is an intracellular pathogen that uses effector proteins translocated by the Dot/Icm type IV secretion system to modulate host cellular processes. Here we investigate the dynamics of subcellular structures containing ubiquitin during L. pneumophila infection of phagocytic host cells. The Dot/Icm system mediated the formation of K48 and K63 poly-ubiquitin conjugates to proteins associated with L. pneumophila -containing vacuoles in macrophages and dendritic cells, suggesting that regulatory events and degradative events involving ubiquitin are regulated by bacterial effectors during infection. Stimulation of TLR2 on the surface of macrophages and dendritic cells by L. pneumophila- derived molecules resulted in the production of ubiquitin-rich dendritic cell aggresome-like structures (DALIS). Cells infected by L. pneumophila with a functional Dot/Icm system, however, failed to produce DALIS. Suppression of DALIS formation did not affect the accumulation of ubiquitinated proteins on vacuoles containing L. pneumophila. Examining other species of Legionella revealed that Legionella jordanis was unable to suppress DALIS formation after creating a ubiquitin-decorated vacuole. Thus, the L. pneumophila Dot/Icm system has the ability to modulate host processes to promote K48 and K63 ubiquitin conjugates on proteins at the vacuole membrane, and independently suppress cellular events required for the formation of DALIS.  相似文献   

10.
A genomic library of Legionella pneumophila, the causative agent of Legionnaires' disease in humans was constructed in Escherichia coli K12 and the recombinant clones were tested for haemolysis and other phenotypic properties. Seven clones were identified which were able to confer haemolysis of human, sheep, and canine erythrocytes but which were unable to mediate proteolytic activities or cytotoxic effects on CHO- or Vero cells. Clones that exhibited this haemolytic property were also able to produce a brown colour and a yellow-green fluorescence activity detected on M9 plates containing tyrosine. The genetic determinant encoding these properties, termed legiolysin (lly) was mapped by Tn1000 mutagenesis and by subcloning experiments. Southern hybridization with an lly-specific gene probe showed that this determinant is part of the genome of L. pneumophila but is not identical to a protease gene of L. pneumophila which also mediates haemolysis. Minicell analysis of lly-specific plasmids exhibited a protein of 39 kDa. Polyclonal antibodies generated against a LacZ-Lly hybrid protein also recognized a 39 kDa protein produced either by the recombinant legiolysin-positive E. coli K12 clones or by L. pneumophila wild-type strains.  相似文献   

11.
With the mutagenesis of specific, virulence-associated genes of Legionella pneumophila as the eventual goal, methods for gene transfer to these bacteria were developed. Following the observations of others that conjugative, broad-host-range plasmids could be transferred from Escherichia coli to L. pneumophila at low frequency, we constructed a small mobilizable vector, pTLP1, which carries oriV from pBR322, oriT from pRK2, Kmr from Tn5, and an L. pneumophila-derived fragment to permit chromosomal integration. In triparental matings including an E. coli with a conjugative (Tra+) helper plasmid, kanamycin-resistance was transferred from E. coli to L. pneumophila. Southern hybridization of L. pneumophila transconjugants showed that pTLP1 was replicated autonomously. Additional matings of plasmids having deletions or substitutions of pTLP1 sequences confirmed that replication in L. pneumophila requires oriV only. pTLP1 was maintained in L. pneumophila with passage on medium containing kanamycin but was rapidly lost after passage on nonselective medium. This plasmid instability in L. pneumophila is most likely due to rapid generation of plasmid-free segregants because of plasmid multimerization and low plasmid copy number. We conclude that mobilizable pBR322-derived plasmids can be used as shuttle vectors to transfer cloned genes to L. pneumophila, a feature that can be exploited for the purposes of mutagenesis or genetic complementation.  相似文献   

12.
Kodama Y  Fujishima M 《Protist》2009,160(1):65-74
Each symbiotic Chlorella of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole to protect from lysosomal fusion. To understand the timing of differentiation of the perialgal vacuole from the host digestive vacuole, algae-free P. bursaria cells were fed symbiotic C. vulgaris cells for 1.5min, washed, chased and fixed at various times after mixing. Acid phosphatase activity in the vacuoles enclosing the algae was detected by Gomori's staining. This activity appeared in 3-min-old vacuoles, and all algae-containing vacuoles demonstrated activity at 30min. Algal escape from these digestive vacuoles began at 30min by budding of the digestive vacuole membrane into the cytoplasm. In the budded membrane, each alga was surrounded by a Gomori's thin positive staining layer. The vacuoles containing a single algal cell moved quickly to and attached just beneath the host cell surface. Such vacuoles were Gomori's staining negative, indicating that the perialgal vacuole membrane differentiates soon after the algal escape from the host digestive vacuole. This is the first report demonstrating the timing of differentiation of the perialgal vacuole membrane during infection of P. bursaria with symbiotic Chlorella.  相似文献   

13.
Chloramination which is used in South Australia to control the growth of Naegleria fowleri , was investigated to see if it would also control that of Legionella pneumophila . It was found that L. pneumophila was more sensitive than Escherichia coli to monochloramine. At 1.0 mg/l, a 99% kill of L. pneumophila was achieved in 15 min compared with 37 min for a 99% kill of E. coli. Combined with the stability of monochloramine, even at elevated temperatures, the results suggest that this disinfectant would control the growth of L. pneumophila in water distribution systems.  相似文献   

14.
Dictyostelium amoebae are professional phagocytes, which ingest bacteria as the principal source of food. We have cloned the Dictyostelium homologue of human natural resistance-associated membrane protein 1 (Nramp1) [solute carrier family 11 member 1 (Slc11a1)], an endo-lysosomal membrane protein that confers on macrophages resistance to infection by a variety of intracellular bacteria and protozoa. The Dictyostelium Nramp1 gene encodes a protein of 53 kDa with 11 putative transmembrane domains. The Nramp1 gene is transcribed during the growth-phase and downregulated to barely detectable levels upon starvation. To gain insights into their intracellular localization, we fused Nramp1 or the vatB subunit of the V-H(+)ATPase with green fluorescent protein and expressed in cells. Green fluorescent protein-vatB was inserted in membranes of all acidic compartments and the contractile vacuole network and decorated macropinosomes and phagosomes. Green fluorescent protein-Nramp1 decorated macropinosomes and phagosomes, in addition to intracellular vesicular compartments positive for endosomal SNARE protein Vti1 or vacuolin, a marker of the exocytic pathway. Nramp1 disruption generated mutants that were more permissive hosts than wild-type cells for intracellular growth of Legionella pneumophila and Micobacterium avium. Nramp1 overexpression protected cells from L. pneumophila infection. Evidence is provided that Nramp1 transports metal cations out of the phagolysosome in an ATP-dependent process and that L. pneumophila and M. avium use different mechanisms to neutralize Nramp1 activity.  相似文献   

15.
Chloramination which is used in South Australia to control the growth of Naegleria fowleri, was investigated to see if it would also control that of Legionella pneumophila. It was found that L. pneumophila was more sensitive than Escherichia coli to monochloramine. At 1.0 mg/l, a 99% kill of L. pneumophila was achieved in 15 min compared with 37 min for a 99% kill of E. coli. Combined with the stability of monochloramine, even at elevated temperatures, the results suggest that this disinfectant would control the growth of L. pneumophila in water distribution systems.  相似文献   

16.
Legionella pneumophila replicates within amoebae and macrophages and causes the severe pneumonia Legionnaires' disease. When broth cultures enter the post-exponential growth (PE) phase or experience amino acid limitation, L. pneumophila accumulates the stringent response signal (p)ppGpp and expresses traits likely to promote transmission to a new phagocyte. The hypothesis that a stringent response mechanism regulates L. pneumophila virulence was bolstered by our finding that the avirulent mutant Lp120 contains an internal deletion in the gene encoding the stationary phase sigma factor RpoS. To test directly whether RpoS co-ordinates virulence with stationary phase, isogenic wild-type, rpoS-120 and rpoS null mutant strains were constructed and analysed. PE phase L. pneumophila became cytotoxic by an RpoS-independent pathway, but their sodium sensitivity and maximal expression of flagellin required RpoS. Likewise, full induction of sodium sensitivity by experimentally induced (p)ppGpp synthesis required RpoS. To replicate efficiently in macrophages, L. pneumophila used both RpoS-dependent and -independent pathways. Like those containing the dotA type IV secretory apparatus mutant, phagosomes harbouring either rpoS or dotA rpoS mutants rapidly acquired the late endosomal protein LAMP-1, but not the lysosomal marker Texas red-ovalbumin. Together, the data support a model in which RpoS co-operates with other regulators to induce L. pneumophila virulence in the PE phase.  相似文献   

17.
Biogenesis of a specialized organelle that supports intracellular replication of Legionella pneumophila involves the fusion of secretory vesicles exiting the endoplasmic reticulum (ER) with phagosomes containing this bacterial pathogen. Here, we investigated host plasma membrane SNARE proteins to determine whether they play a role in trafficking of vacuoles containing L. pneumophila. Depletion of plasma membrane syntaxins by RNA interference resulted in delayed acquisition of the resident ER protein calnexin and enhanced retention of Rab1 on phagosomes containing virulent L. pneumophila, suggesting that these SNARE proteins are involved in vacuole biogenesis. Plasma membrane‐localized SNARE proteins syntaxin 2, syntaxin 3, syntaxin 4 and SNAP23 localized to vacuoles containing L. pneumophila. The ER‐localized SNARE protein Sec22b was found to interact with plasma membrane SNAREs on vacuoles containing virulent L. pneumophila, but not on vacuoles containing avirulent mutants of L. pneumophila. The addition of α‐SNAP and N‐ethylmaleimide‐sensitive factor (NSF) to the plasma membrane SNARE complexes formed by virulent L. pneumophila resulted in the dissociation of Sec22b, indicating functional pairing between these SNAREs. Thus, L. pneumophila stimulates the non‐canonical pairing of plasma membrane t‐SNAREs with the v‐SNARE Sec22b to promote fusion of the phagosome with ER‐derived vesicles. The mechanism by which L. pneumophila promotes pairing of plasma membrane syntaxins and Sec22b could provide unique insight into how the secretory vesicles could provide an additional membrane reserve subverted during phagosome maturation.  相似文献   

18.
Legionella pneumophila is a gram-negative bacterium prevalent in fresh water which accidentally infects humans and is responsible for the disease called legionellosis. Intracellular growth of L. pneumophila in Tetrahymena is inconsistent; in the species Tetrahymena tropicalis stationary-phase forms (SPFs) of L. pneumophila differentiate into mature intracellular forms (MIFs) without apparent bacterial replication and are expelled from the ciliate as pellets containing numerous MIFS. In the present work, we tested the impact of L. pneumophila passage through T. tropicalis. We observed that MIFs released from T. tropicalis are more resistant to various stresses than SPFs. Under our conditions, MIFs harboured a higher gentamicin resistance, maintained even after 3 months as pellets. Long-term survival essays revealed that MIFs survived better in a nutrient-poor environment than SFPs, as a reduction of only about 3 logs was observed after 4 months in the MIF population, whereas no cultivable SPFs were detected after 3 months in the same medium, corresponding to a loss of about 7 logs. We have also observed that MIFs are significantly more infectious in human pneumocyte cells compared with SPFs. These results strongly suggest a potential role of ciliates in increasing the risk of legionellosis.  相似文献   

19.
The ability of a ciliate to inactivate bacteriophage was studied because these viruses are known to influence the size and diversity of bacterial populations, which affect nutrient cycling in natural waters and effluent quality in sewage treatment, and because ciliates are ubiquitous in aquatic environments, including sewage treatment plants. Tetrahymena thermophila was used as a representative ciliate; T4 was used as a model bacteriophage. The T4 titer was monitored on Escherichia coli B in a double-agar overlay assay. T4 and the ciliate were incubated together under different conditions and for various times, after which the mixture was centrifuged through a step gradient, producing a top layer free of ciliates. The T4 titer in this layer decreased as coincubation time increased, but no decrease was seen if phage were incubated with formalin-fixed Tetrahymena. The T4 titer associated with the pellet of living ciliates was very low, suggesting that removal of the phage by Tetrahymena inactivated T4. When Tetrahymena cells were incubated with SYBR gold-labeled phage, fluorescence was localized in structures that had the shape and position of food vacuoles. Incubation of the phage and ciliate with cytochalasin B or at 4 degrees C impaired T4 inactivation. These results suggest the active removal of T4 bacteriophage from fluid by macropinocytosis, followed by digestion in food vacuoles. Such ciliate virophagy may be a mechanism occurring in natural waters and sewage treatment, and the methods described here could be used to study the factors influencing inactivation and possibly water quality.  相似文献   

20.
In mammals, Rab5 and Rab7 play a specific and coordinated role in a sequential process during phagosome maturation. Here, we report that Rab5 and Rab7 in the enteric protozoan parasite Entamoeba histolytica, EhRab5 and EhRab7A, are involved in steps that are distinct from those known for mammals. EhRab5 and EhRab7A were localized to independent small vesicular structures at steady state. Priming with red blood cells induced the formation of large vacuoles associated with both EhRab5 and EhRab7A ("prephagosomal vacuoles (PPV)") in the amoeba within an incubation period of 5-10 min. PPV emerged de novo physically and distinct from phagosomes. PPV were gradually acidified and matured by fusion with lysosomes containing a digestive hydrolase, cysteine proteinase, and a membrane-permeabilizing peptide amoebapore. After EhRab5 dissociated from PPV, 5-10 min later, the EhRab7A-PPV fused with phagosomes, and EhRab7A finally dissociated from the phagosomes. Immunoelectron and light micrographs showed that PPV contained small vesicle-like structures containing fluid-phase markers and amoebapores, which were not evenly distributed within PPV, suggesting that the mechanism was similar to multivesicular body formation in PPV generation. In contrast to Rab5 from other organisms, EhRab5 was involved exclusively in phagocytosis, but not in endocytosis. Overexpression of wild-type EhRab5 enhanced phagocytosis and the transport of amoebapore to phagosomes. Conversely, expression of an EhRab5Q67L GTP form mutant impaired the formation of PPV and phagocytosis. Altogether, we propose that the amoebic Rab5 plays an important role in the formation of unique vacuoles, which is essential for engulfment of erythrocytes and important for packaging of lysosomal hydrolases, prior to the targeting to phagosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号