首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many hermaphroditic plants avoid self-fertilization by rejecting pollen that express genetically determined specificities in common with the pistil. The S-locus, comprising the determinants of pistil and pollen specificity, typically shows extremely high polymorphism, with dozens to hundreds of specificities maintained within species. This article explores a conjecture, motivated by empirical findings, that the expression of recessive deleterious factors at sites closely linked to the S-locus may cause greater declines in the viability of zygotes constituted from more closely related S-alleles. Diffusion approximation models incorporating variation in viability among S-locus genotypes and antagonistic interactions between a new specificity and its immediate parent specificity are constructed and analyzed. Results indicate that variation in viability tends to reduce the number of specificities maintained in a population at stochastic steady state, and that genealogy-based antagonism reduces the rate of bifurcation of S-allele lineages. These effects may account for some of the unusual features observed in empirical studies of S-allele genealogies.  相似文献   

2.

Background and Aims

Mating system is a primary determinant of the ecological and evolutionary dynamics of wild plant populations. Pollen limitation and loss of self-incompatibility genotypes can both act independently to reduce seed set and these effects are commonly observed in fragmented landscapes. This study used a simulation modelling approach to assess the interacting effects of these two processes on plant reproductive performance and population viability for a range of pollination likelihood, self-incompatibility systems and S-allele richness conditions.

Methods

A spatially explicit, individual-based, genetic and demographic simulation model parameterized to represent a generic self-incompatible, short-lived perennial herb was used to conduct simulation experiments in which pollination probability, self-incompatibility type (gametophytic and sporophytic) and S-allele richness were systematically varied in combination to assess their independent and interacting effects on the demographic response variables of mate availability, seed set, population size and population persistence.

Key Results

Joint effects of reduced pollination probability and low S-allele richness were greater than independent effects for all demographic response variables except population persistence under high pollinator service (>50 %). At intermediate values of 15–25 % pollination probability, non-linear interactions with S-allele richness generated significant reductions in population performance beyond those expected by the simple additive effect of each independently. This was due to the impacts of reduced effective population size on the ability of populations to retain S alleles and maintain mate availability. Across a limited set of pollination and S-allele conditions (P = 0·15 and S = 20) populations with gametophytic SI showed reduced S-allele erosion relative to those with sporophytic SI, but this had limited effects on individual fecundity and translated into only modest increases in population persistence.

Conclusions

Interactions between pollen limitation and loss of S alleles have the potential to significantly reduce the viability of populations of a few hundred plants. Population decline may occur more rapidly than expected when pollination probabilities drop below 25 % and S alleles are fewer than 20 due to non-additive interactions. These are likely to be common conditions experienced by plants in small populations in fragmented landscapes and are also those under which differences in response between gameptophytic and sporophtyic systems are observed.  相似文献   

3.
Apple trees display gametophytic self-incompatibility which is controlled by a series of polymorphic S-alleles. To resolve the discrepancies in S-allele assignment that appeared in the literature, we have re-examined the identity of S-alleles known from domestic apple cultivars. Upon an alignment of S-allele nucleotide sequences, we designed allele-specific primer pairs to selectively amplify a single S-allele per reaction. Alternatively, highly similar S-alleles that were co-amplified with the same primer pair were discriminated through their distinct restriction digestion pattern. This is an extension of our previously developed allele-specific PCR amplification approach to reveal the S-genotypes in apple cultivars. Amplification parameters were optimised for the unique detection of the 15 apple S-alleles of which the nucleotide sequences are known. Both the old cultivars with a known S-genotype and a number of more common cultivars were assayed with this method. In most cases, our data coincided with those obtained through phenotypic and S-RNase analysis. However, three S-alleles were shown to relate to RNases that were previously proposed as being encoded by distinct S-alleles. For another S-allele the corresponding gene product has not been discriminated. Consequently, we propose the re-numbering of these four S-alleles. Furthermore, two alleles that were previously identified as S(27a) and S(27b) now received a distinct number, despite their identical S-specificity. To ease widespread future analysis of S-genotypes, we identified common cultivars that may function as a witness for bearing a particular S-allele. We discuss the assignment of new S-alleles which should help to avoid further confusion.  相似文献   

4.
Determination of S-allele combinations of sweet cherry genotypes and cultivars has importance for both growers and breeders. We determined S-allele combinations of 40 local Turkish sweet cherry genotypes using a PCR-based method. Ten different S-alleles were detected. Although the most common S-allele was S3, as also found in Western genotypes and cultivars, there were some differences in the frequencies of some S-alleles between Turkish and Western sweet cherry genotypes. According to their S-allele compositions, 30 local Turkish sweet cherry genotypes were assigned to 10 previously identified incompatibility groups. For the remaining genotypes, whose S-allele combinations did not fit to any previous incompatibility groups, three more incompatibility groups, XLII, XLIII and XLIV, were proposed. Results obtained from this study will help both sweet cherry growers and breeders to better manage these local Turkish sweet cherry genotypes in their orchards.  相似文献   

5.
The evolutionary dynamics of self-incompatibility systems   总被引:1,自引:0,他引:1  
Self-incompatible flowering plants reject pollen that expresses the same mating specificity as the pistil (female reproductive tract). In most plant families, pollen and pistil mating specificities segregate as a single locus, the S locus. In at least two self-incompatibility systems, distinct pollen and pistil specificity genes are embedded in an extensive nonrecombining tract. To facilitate consideration of how new S locus specificities arise in systems with distinct pollen and pistil genes, we present a graphical model for the generation of hypotheses. It incorporates the evolutionary principle that nonreciprocal siring success (cross-pollinations between two plants produce seeds in only one direction) tends to favor the rejecting partner. This model suggests that selection within S-allele specificity classes could accelerate the rate of nonsynonymous (amino acid-changing) substitutions, with periodic selective sweeps removing segregating variation within classes. Accelerated substitution within specificity classes could also promote the origin of new S-allele specificities.  相似文献   

6.
Negative frequency dependent selection (NFDS) is supposed to be the main force controlling allele evolution at the gametophytic self-incompatibility locus (S-locus) in strictly outcrossing species. Genetic drift also influences S-allele evolution. In perennial sessile organisms, evolution of allelic frequencies over two generations is mainly shaped by individual fecundities and spatial processes. Using wild cherry populations between two successive generations, we tested whether S-alleles evolved following NFDS qualitative and quantitative predictions. We showed that allelic variation was negatively correlated with parental allelic frequency as expected under NFDS. However, NFDS predictions in finite population failed to predict more than half S-allele quantitative evolution. We developed a spatially explicit mating model that included the S-locus. We studied the effects of self-incompatibility and local drift within populations due to pollen dispersal in spatially distributed individuals, and variation in male fecundity on male mating success and allelic frequency evolution. Male mating success was negatively related to male allelic frequency as expected under NFDS. Spatial genetic structure combined with self-incompatibility resulted in higher effective pollen dispersal. Limited pollen dispersal in structured distributions of individuals and genotypes and unequal pollen production significantly contributed to S-allele frequency evolution by creating local drift effects strong enough to counteract the NFDS effect on some alleles.  相似文献   

7.
Recently, the self-incompatibility (S-) genotypes of 56 apple cultivars were examined by protein analysis, which led to the identification by Boskovic and Tobutt of 14 putative ’new’ S-alleles, S12 to S25. This paper reports a re-examination of the S-genotypes of some of these cultivars through S-allele ’specific’ PCR and sequence analysis. The results obtained by this analysis indicated that the number of S-alleles that are present in apple is probably smaller than the number proposed by Boskovic and Tobutt. The existence of three ’new’ S-alleles (S20, S22 and S24) was confirmed. The existence of two other putative ’new’ S-alleles (S23 and S25) was, however, contradicted. The coding sequences of the S-alleles that correspond to the S10 and the S25 ribonuclease bands as well as those corresponding to the S22 and the S23 ribonuclease bands were shown to be identical in sequence. Interestingly, the S-allele corresponding to the S22 and the S23 ribonuclease bands shared a high sequence identity (99% identity) with S27, which was previously cloned and sequenced from Baskatong, but which was not included in the analysis conducted by Boskovic and Tobutt. Both S-alleles only differ in point mutations, which are not translated into differences in amino-acid sequence. To our knowledge, this is the first report of two S-alleles that differ at the nucleotide level but still encode for identical S-RNases. The implications of these observations for determining the S-genotypes of plants by PCR analysis or protein analysis are discussed. Received: 10 January 2001 / Accepted: 19 January 2001  相似文献   

8.
Pickup M  Young AG 《Heredity》2008,100(3):268-274
Self-incompatibility systems function to prevent inbreeding, and work effectively in large, genetically diverse populations. However, a decrease in population size can reduce genetic diversity at the self-incompatibility locus, which leads to a reduction in mate availability and has important demographic implications for small populations. Currently, little is known about the response of self-incompatible polyploid species to a reduction in population size. In Rutidosis leptorrhynchoides there was a significant decrease in the within-population probability of fertilization with a decline in population size for diploid populations and a marginally significant relationship for tetraploid populations, suggesting that in small populations of both chromosome races fertilization success is reduced due to a decrease in self-incompatibility allele (S-allele) diversity. There was no significant difference between the slopes of the fertility-population size relationship for diploid and tetraploid populations which indicates a similar rate of decline in fertilization success with population size for both chromosome races. Fertilization success increased when crosses were undertaken between populations and this was significantly related to population size for diploid and tetraploid populations, indicating that small populations gain the greatest benefit to fertilization success from crossing between populations. For tetraploid populations the benefits of crossing between populations tended to decline more rapidly with increasing population size. These results suggest that for small populations that have reduced fertilization success, genetic rescue by introducing new genetic material from other populations is an important means of ameliorating mate limitation issues associated with reduced S-allele diversity in both diploid and tetraploid races.  相似文献   

9.
Small populations of self-incompatible plants are assumed to be threatened by a limitation of compatible mating partners due to low genetic diversity at the self-incompatibility (S) locus. In contrast, we show by using a PCR-RFLP approach for S-genotype identification that 15 small populations (N = 8-88) of the rare wild pear (Pyrus pyraster) displayed no mate limitation. S-allele diversity within populations was high (N = 9-21) as was mate availability (92.9-100%). Although population size and S-allele diversity were strongly related, no relationship was found between population size and mate availability, gene diversity (He), or fixation index (F(IS)), based on five neutral microsatellite loci. As we determined the principal mate availability within populations based on the S-genotypes observed, the realized mate availability under natural conditions may differ from our estimates, for example, due to spatially limited pollen dispersal. We therefore urge studies on self-incompatible plants to proceed from the simple assessment of principal mate availability to the determination of realized mate availability in natural populations.  相似文献   

10.
11.
Pollen from three S-genotypes of Nicotiana alata was grown in vitro in the presence of S-glycoproteins isolated from styles of the same three genotypes. Pollen germination was not affected by the presence of the S-glycoproteins, but pollen tube growth of all genotypes was inhibited. S2 pollen was preferentially inhibited by the S2-glycoprotein and S3 pollen by the S3-glycoprotein. The S6-glycoprotein preferentially inhibited growth of both S2 and S6 pollen over S3 pollen. Heat treatment dramatically increased the inhibitory activity of the S-glycoproteins as inhibitors both of pollen germination and tube growth; after heat treatment, S-allele specificity of pollen tube inhibition was not detected.  相似文献   

12.
Senecio squalidus L. (Asteraceae) has been the subject of several ecological and population genetic studies due to its well-documented history of introduction, establishment and spread throughout Britain in the past 300 years. Our recent studies have focused on identifying and quantifying factors associated with the sporophytic self-incompatibility (SSI) system of S. squalidus that may have contributed to its success as a colonist. These findings are of general biological interest because they provide important insights into the short-term evolutionary dynamics of a plant mating system. The number of S-alleles in populations and their dominance interactions were investigated in eight wild British populations using cross-diallel studies. The numbers of S-alleles in British S. squalidus populations are typically low (average of 5.3 S-alleles) and the entire British population is estimated to possess no more than 7-11 S-alleles. Such low numbers of S-alleles are most probably a consequence of population bottlenecks associated with introduction and colonization. Potential evolutionary impacts on SSI caused by a paucity of S-alleles, such as restricted mate availability, are discussed, and we suggest that increased dominance interactions between S-alleles may be an important short-term means of increasing mate availability when S-allele numbers are low.  相似文献   

13.
Gametophytic self-incompatibility (SI) in plants is a widespread mechanism preventing self-fertilization and the ensuing inbreeding depression, but it often evolves to self-compatibility. We analyze genetic mechanisms for the breakdown of gametophytic SI, incorporating a dynamic model for the evolution of inbreeding depression allowing for partial purging of nearly recessive lethal mutations by selfing, and accounting for pollen limitation and sheltered load linked to the S-locus. We consider two mechanisms for the breakdown of gametophytic SI: a nonfunctional S-allele and an unlinked modifier locus that inactivates the S-locus. We show that, under a wide range of conditions, self-compatible alleles can invade a self-incompatible population. Conditions for invasion are always less stringent for a nonfunctional S-allele than for a modifier locus. The spread of self-compatible genotypes is favored by extremely high or low selfing rates, a small number of S-alleles, and pollen limitation. Observed parameter values suggest that the maintenance of gametophytic SI is caused by a combination of high inbreeding depression in self-incompatible populations coupled with intermediate selfing rates of the self-compatible genotypes and sheltered load linked to the S-locus.  相似文献   

14.
A stochastic computer simulation model was created to compare the combined effects of selection and genetic drift on the dynamics of S-alleles under full sporophytic self-incompatibility (SI) versus transient SI, a form of partial SI in which flowers become self-compatible as they age. S-alleles were lost more rapidly with transient than with full SI, as is expected with weakened frequency-dependent selection. Based on these results, equilibrium S-allele diversity is expected to be lower with partial SI for populations of comparable size and migration rates. Consistent with model results, a comparison of the proportion of incompatible crosses in full diallel experiments for a fully SI and a transiently SI species in the annual genus Leptosiphon suggests that S-allele diversity is lower in the partially SI species. Results of the simulation model indicate that the transmission advantage of self-fertilization can have complex effects on S-allele dynamics in partial SI systems.  相似文献   

15.
A molecular technique for the identification of S-alleles involved in self-incompatibility has been used to analyse the S-allele reference collection of Brassica oleracea. The reference collection contains nearly 50 different lines each with a different S-allele present in the homozygous state. The technique consists of amplifying by the polymerase chain reaction (PCR) sequences belonging to the S multigene sequence family using a single pair of conserved primers. PCR products are then analysed further by digestion with six restriction enzymes followed by gel electrophoresis of the digestion products. A simple method of estimating the band sizes of the digestion products is described. The S-locus-related sequences can be distinguished from S-locus glycoprotein and S-receptor kinase genes by the restriction patterns. Furthermore, with any one restriction enzyme, several alleles showed the same restriction pattern. Alleles could therefore be grouped together. With two exceptions, each member of the S-allele reference collection showed a unique set of restriction patterns. Investigation of the exceptions using pollen tube growth tests showed that these accessions represented duplications within the collection. This technique therefore provides a simple and useful method for identifying different S-alleles.  相似文献   

16.
芸薹属的自交不亲和性是受单基因座、复等位基因控制的孢子体控制型。自交不亲和基因座位(S-locus)是由多个基因组成的复杂区域,称之为S多基因家族,其大多数成员分布于芸薹属的整个染色体组。目前已鉴定出100多个S等位基因,它们的起源分化始于一千万年前。S-座位上存在的多基因有3种:SRK,SLG和SCR/SP11;SRK和SLG在柱头中表达,SCR/SP11在雄蕊中表达。SRK蛋白在识别同类花粉的过程中起主要作用,而SLG蛋白增强了这种自交不亲和反应。SLG与SRK基因中编码S-结构域的核苷酸序列相似性程度高达85%~98%。基因转换可能是SLG和SRK的高度同源性能够得以保持的原因。SRK,SLG和SCR基因紧密相连,并表现出高水平的序列多样性。SRK与SLG基因间的距离很近,在20~25 kb之间。在柱头和花粉中,自交不亲和等位基因之间的共显性关系要比显性和隐性关系更加普遍,这是芸薹属自交不亲和性的一大特点。自交不亲和基因的进化模式存在两种假说:双基因进化模式和中性变异体进化模式;可能存在几种不同的进化方式,它们共同在自然群体中新的S等位基因进化过程中起作用。  相似文献   

17.
The morphological features of pollen and seed of Araucaria angustifolia have led to the proposal of limited gene dispersal for this species. We used nuclear microsatellite and AFLP markers to assess patterns of genetic variation in six natural populations at the intra- and inter-population level, and related our findings to gene dispersal in this species. Estimates of both fine-scale spatial genetic structure (SGS) and migration rate suggest relatively short-distance gene dispersal. However, gene dispersal differed among populations, and effects of more efficient dispersal within population were observed in at least one stand. In addition, even though some seed dispersal may be aggregated in this principally barochorous species, reasonable secondary seed dispersal, presumably facilitated by animals, and overlap of seed shadows within populations is suggested. Overall, no correlation was observed between levels of SGS and inbreeding, density or age structure, except that a higher level of SGS was revealed for the population with a higher number of juvenile individuals. A low estimate for the number of migrants per generation between two neighbouring populations implies limited gene flow. We expect that stepping-stone pollen flow may have contributed to low genetic differentiation among populations observed in a previous survey. Thus, strategies for maintenance of gene flow among remnant populations should be considered in order to avoid degrading effects of population fragmentation on the evolution of A. angustifolia.  相似文献   

18.
Genetic modification in plants helps us to understand molecular mechanisms underlying on plant fitness and to improve profitable crops. However, in transgenic plants, the value of gene expression often varies among plant populations of distinct lines and among generations of identical individuals. This variation is caused by several reasons, such as differences in the chromosome position, repeated sequences, and copy number of the inserted transgene. Developing a state-of-art technology to avoid the variation of gene expression levels including gene silencing has been awaited. Here, we developed a novel binary plasmid (pTACAtg1) that is based on a transformation-competent artificial chromosome (TAC) vector, harboring long genomic DNA fragments on both sides of the cloning sites. As a case study, we cloned the cauliflower mosaic virus 35S promoter:β-glucuronidase (35S:GUS) gene cassettes into the pTACAtg1, and introduced it with long flanking sequences on the pTACAtg1 into the plants. In isolated transgenic plants, the copy number was reduced and the GUS expressions were detected more stably than those in the control plants carrying the insert without flanking regions. In our result, the reduced copy number of a transgene suppressed variation and silencing of its gene expression. The pTACAtg1 vector will be suitable for the production of stable transformants and for expression analyses of a transgene.  相似文献   

19.
A total of 1,239 skeletons from among Mongoloid, Caucasoid and Negroid population groups in North America was examined for variations in the number of presacral vertebrae. The overall incidence of variation was 11%; 6% with 23 and 5% with 25 presacral vertebrae. Differences in total variation among the three groups were not significant, but differences in the incidence of 23 and 25 presacral vertebrae among the groups were highly significant. Numerical vertebral variation occurred in 11% of both sexes, but with males having a higher frequency of 25 presacral vertebrae and females having a higher frequency of 23 presacral vertebrae. The incidence of the specific variation of 23 or 25 presacral vertebrae was not significantly different among the males of the three groups studied, whereas 23 presacral vertebrae were found significantly more often in the Negroid females. Numerical variation of vertebrae was not associated with age. The data strongly support the conclusion that the total frequency of variation in the number of presacral vertebrae is a specific characteristic of any particular population group and that there is a tendency in all population groups toward an increase in number in males and a decrease in number in females.  相似文献   

20.
Trade-offs between flower size and number seem likely to influence the evolution of floral display and are an important assumption of several theoretical models. We assessed floral trade-offs by imposing two generations of selection on flower size and number in a greenhouse population of bee-pollinated Eichhornia paniculata. We established a control line and two replicate selection lines of 100 plants each for large flowers (S+), small flowers (S-), and many flowers per inflorescence (N+). We compared realized heritabilities and genetic correlations with estimates based on restricted-maximum-likelihood (REML) analysis of pedigrees. Responses to selection confirmed REML heritability estimates (flower size, h2 = 0.48; daily flower number, h2 = 0.10; total flower number, h2 = 0.23). Differences in nectar, pollen, and ovule production between S+ and S- lines supported an overall divergence in investment per flower. Both realized and REML estimates of the genetic correlation between daily and total flower number were r = 1.0. However, correlated responses to selection were inconsistent in their support of a trade-off. In both S- lines, correlated increases in flower number indicated a genetic correlation of r = -0.6 between flower size and number. In contrast, correlated responses in N+ and S+ lines were not significant, although flower size decreased in one N+ line. In addition, REML estimates of genetic correlations between flower size and number were positive, and did not differ from zero when variation in leaf area and age at first flowering were taken into account. These results likely reflect the combined effects of variation in genes controlling the resources available for flowering and genes with opposing effects on flower size and number. Our results suggest that the short-term evolution of floral display is not necessarily constrained by trade-offs between flower size and number, as is often assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号