首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
2.
3.
The timing of oligodendrocyte development is regulated by thyroid hormone (TH) in vitro and in vivo, but it is still uncertain which TH receptors mediate this regulation. TH acts through nuclear receptors that are encoded by two genes, TRalpha and TRbeta. Here, we provide direct evidence for the involvement of the TRalpha1 receptor isoform in vivo, by showing that the number of oligodendrocytes in the postnatal day 7 (P7) and P14 optic nerve of TRalpha1-/- mice is decreased compared with normal. We demonstrate that TRalpha1 mediates the normal differentiation-promoting effect of TH on oligodendrocyte precursor cells (OPCs): unlike wild-type OPCs, postnatal TRalpha1-/- OPCs fail to stop dividing and differentiate in response to TH in culture. We also show that overexpression of TRalpha1 accelerates oligodendrocyte differentiation in culture, suggesting that the level of TRalpha1 expression is normally limiting for TH-dependent OPC differentiation. Finally, we provide evidence that the inhibitory isoforms of TRalpha are unlikely to play a part in the timing of OPC differentiation.  相似文献   

4.
Nuclear thyroid hormone (TH) receptors (TR) play a critical role in mediating the diverse actions of TH in development, differentiation, and metabolism of most tissues, but the role of TR isoforms in muscle development and function is unclear. Therefore, we have undertaken a comprehensive expression analysis of TRalpha 1, TRbeta 1, TRbeta 2 (TH binding), and TRalpha 2 (non-TH binding) in functionally distinct porcine muscles during prenatal and postnatal development. Use of a novel and highly sensitive RNase protection assay revealed striking muscle-specific developmental profiles of all four TR isoform mRNAs in cardiac, longissimus, soleus, rhomboideus, and diaphragm. Distribution of TR isoforms varied markedly between muscles; TRalpha expression was considerably greater than TRbeta and there were significant differences in the ratios TRalpha 1:TRalpha 2, and TRbeta 1:TRbeta 2. Together with immunohistochemistry of myosin heavy chain isoforms and data on myogenesis and maturation of the TH axis, these findings provide new evidence that highlights central roles for 1) TRalpha isoforms in fetal myogenesis, 2) the ratio TRalpha 1:TRalpha 2 in determining cardiac and skeletal muscle phenotype and function; 3) TRbeta in maintaining a basal level of cellular response to TH throughout development and a specific maturational function around birth. These findings suggest that events disrupting normal developmental profiles of TR isoforms may impair optimal function of cardiac and skeletal muscles.  相似文献   

5.
6.
7.
Mutations in the thyroid hormone receptor beta gene (TRbeta) cause resistance to thyroid hormone (RTH). Genetic analyses indicate that phenotypic manifestation of RTH is due to the dominant negative action of mutant TRbeta. However, the molecular mechanisms underlying the dominant negative action of mutants and how the same mutation results in marked variability of resistance in different tissues in vivo are not clear. Here we used a knock-in mouse (TRbetaPV mouse) that faithfully reproduces human RTH to address these questions. We demonstrated directly that TRbeta1 protein was approximately 3-fold higher than TRalpha1 in the liver of TRbeta(+/+) mice but was not detectable in the heart of wild-type and TRbetaPV mice. The abundance of PV in the liver of TRbeta(PV/PV) was more than TRbeta(PV/+) mice but not detectable in the heart. TRalpha1 in the liver was approximately 6-fold higher than that in the heart of wild-type and TRbetaPV mice. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed not only with TR isoforms for binding to thyroid hormone response elements (TRE) but also competed with TR for the retinoid X receptors in binding to TRE. These competitions led to the inhibition of the thyroid hormone (T(3))-positive regulated genes in the liver. In the heart, however, PV was significantly lower and thus could not effectively compete with TRalpha1 for binding to TRE, resulting in activation of the T(3)-target genes by higher levels of circulating thyroid hormones. These results indicate that in vivo, differential expression of TR isoforms in tissues dictates the dominant negative activity of mutant beta receptor, thereby resulting in variable phenotypic expression in RTH.  相似文献   

8.
9.
We investigated the effect of thyroid hormone (TH) receptor (TR)alpha and -beta isoforms in TH action in the heart. Noninvasive echocardiographic measurements were made in mice homozygous for disruption of TRalpha (TRalpha(0/0)) or TRbeta (TRbeta(-/-)). Mice were studied at baseline, 4 wk after TH deprivation (using a low-iodine diet containing propylthiouracil), and after 4-wk treatment with TH. Baseline heart rates (HR) were similar in wild-type (WT) and TRalpha(0/0) mice but were greater in TRbeta(-/-) mice. With TH deprivation, HR decreased 49% in WT and 37% in TRbeta(-/-) mice and decreased only 5% in TRalpha(0/0) mice from baseline, whereas HR increased in all genotypes with TH treatment. Cardiac output (CO) and cardiac index (CI) in WT mice decreased (-31 and -32%, respectively) with TH deprivation and increased (+69 and +35%, respectively) with TH treatment. The effects of CO and CI were blunted with TH withdrawal in both TRalpha(0/0) (+8 and -2%, respectively) and TRbeta(-/-) mice (-17 and -18%, respectively). Treatment with TH resulted in a 64% increase in LV mass in WT and a 44% increase in TRalpha(0/0) mice but only a 6% increase in TRbeta(-/-) mice (ANOVA P < 0.05). Taken together, these data suggest that TRalpha and TRbeta play different roles in the physiology of TH action on the heart.  相似文献   

10.
11.
12.
The aim of this study was to determine whether changes in the circulating thyroid hormone (TH) and brain synaptosomal TH content affected the relative levels of mRNA encoding different thyroid hormone receptor (TR) isoforms in adult rat brain. Northern analysis of polyA+RNA from cerebral cortex, hippocampus and cerebellum of control and hypothyroid adult rats was performed in order to determine the relative expression of all TR isoforms. Circulating and synaptosomal TH concentrations were determined by radioimmunoassay. Region-specific quantitative differences in the expression pattern of all TR isoforms in euthyroid animals and hypothyroid animals were recorded. In hypothyroidism, the levels of TRα2 mRNA (non-T3-binding isoform) were decreased in all brain regions examined. In contrast the relative expression of TRα1 was increased in cerebral cortex and hippocampus, whereas in cerebellum remained unaffected. The TRβ1 relative expression in cerebral cortex and hippocampus of hypothyroid animals was not affected, whereas this TR isoform was not detectable in cerebellum. The TR isoform mRNA levels returned to control values following T4 intraperitoneal administration to the hypothyroid rats. The obtained results show that in vivo depletion of TH regulates TR gene expression in adult rat brain in a region-specific manner. (Mol Cell Biochem 278: 93–100, 2005)  相似文献   

13.
Heterochrony, a difference in developmental timing, is a central concept in modern evolutionary biology. An example is pedomorphosis, retention of juvenile characteristics in sexually mature adults, a phenomenon largely represented in salamanders. The mudpuppy (Necturus maculosus) is an obligate pedomorphic amphibian, never undergoing metamorphosis. Thyroid hormone induces tissue transformation in metamorphosing species and this action is mediated by nuclear thyroid hormone (TH) receptors (TRs). The absence of metamorphosis in Necturus has been attributed to a resistance to TH action as treatment with exogenous TH fails to induce transformation. The failure to metamorphose could be due to the lack of TR expression in target tissues, or to a loss of TR function. Toward understanding the molecular basis for the failure of Necturus tissues to respond to TH, and the ultimate cause for the expression of the obligate pedomorphic life history, we characterized the structure, function, and expression of TR genes in Necturus. Strikingly, we found that Necturus TRalpha and TRbeta genes encode fully functional TR proteins. These TRs bind both DNA and TH and can transactivate target genes in response to TH. Both TRalpha and TRbeta are expressed in various tissues. TH treatment in vivo induced expression in the gill of some but not all genes known to be activated by TH in anuran larvae, caused whole organism metabolic effects, but induced no external morphological changes in adults or larvae. Thus, Necturus possesses fully functional TRs and its tissues are not generally resistant to the actions of TH. Rather, the absence of metamorphosis may be due to the loss of TH-dependent control of key genes required for tissue transformation.  相似文献   

14.
Amphibian metamorphosis is under the strict control of thyroid hormones (TH). These hormones induce metamorphosis by controlling gene expression through binding to thyroid hormone receptors (TRs). Necturus maculosus is considered to be an obligatory paedomorphic Amphibian since metamorphosis never occurs spontaneously and cannot be induced by pharmacological means. Since metamorphosis depends on the acquisition of response of tadpole tissues to thyroid hormone, we aimed to determine TR gene expression patterns in Necturus maculosus as well as the expression of two TH-related genes: Cytosolic Thyroid Hormone-Binding Protein (CTHBP)-M2-pyruvate kinase, a gene encoding a cytosolic TH binding protein and stromelysin 3, a direct TH target gene in Xenopus laevis. Tissue samples were obtained from specimens of Necturus maculosus. We performed in situ hybridization using non-cross-hybridizing RNA probes obtained from the cloned Necturus TRalpha and TRbeta genes. We found clear expression of Necturus TRalpha gene in several tissues including the central nervous system, epithelial cells of digestive and urinary organs, as well as myocardium and skeletal muscle. TRbeta was also expressed in the brain. In other tissues, hybridization signals were too low to draw reliable conclusions about their precise distribution. In addition, we observed that the expression of CTHBP and ST3 is largely distinct from that of TRs. The fact that we observed a clear expression of TRalpha and TRbeta which are evolutionary conserved, suggests that Necturus tissues express TRs. Our results thus indicate that, in contrast to previously held hypotheses, Necturus tissues are TH responsive.  相似文献   

15.
16.
The thyroid hormone (TH) controls, via its nuclear receptor, TH receptor-alpha1 (TRalpha1), intestinal crypt cell proliferation in the mouse. In order to understand whether this receptor also plays a role in intestinal regeneration after DNA damage, we applied a protocol of gamma-ray irradiation and monitored cell proliferation and apoptosis at several time points. In wild-type mice, the dose of 8 Gy induced cell cycle arrest and apoptosis in intestinal crypts a few hours after irradiation. This phenomenon reverted 48 h after irradiation. TRalpha(0/0) mutant mice displayed a constant low level of proliferating cells and a high apoptosis rate during the period of study. At the molecular level, in TRalpha(0/0) animals we observed a delay in the p53 phosphorylation induced by DNA damage. In our search for the expression of the protein kinases responsible for p53 phosphorylation upon irradiation, we have focused on DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The number of cells expressing DNA-PKcs in crypts remained high 48 h after irradiation, specifically in TRalpha mutants. Altogether, in TRalpha(0/0) animals the rate of apoptosis in crypt cells remained high, apparently due to an elevated number of cells still presenting DNA damage. In conclusion, the TRalpha gene plays a role in crypt cell homeostasis by regulating the rate of cell renewal and apoptosis induced by DNA damage.  相似文献   

17.
It has been previously shown that regulators of physiological growth such as thyroid hormone (TH) can favorably remodel the post ischaemic myocardium. Here, we further explored whether this effect can be preserved in the presence of co-morbidities such as diabetes which accelerates cardiac remodeling and increases mortality after myocardial infarction. Acute myocardial infarction (AMI) was induced by left coronary ligation in rats with type I diabetes (DM) induced by streptozotocin administration (STZ; 35 mg/kg; i.p.) while sham-operated animals served as controls (SHAM). AMI resulted in distinct changes in cardiac function and geometry; EF% was significantly decreased in DM-AMI [37.9 ± 2.0 vs. 74.5 ± 2.1 in DM-SHAM]. Systolic and diastolic chamber dimensions were increased without concomitant increase in wall thickness and thus, wall tension index [WTI, the ratio of (Left Ventricular Internal Diameter at diastole)/2*(Posterior Wall thickness)], an index of wall stress, was found to be significantly increased in DM-AMI; 2.27 ± 0.08 versus 1.70 ± 0.05. 2D-Strain echocardiographic analysis showed reduced systolic radial strain in all segments, indicating increased loss of cardiac myocytes in the infarct related area and less compensatory hypertrophy in the viable segments. This response was accompanied by a marked decrease in the expression of TRα1 and TRβ1 receptors in the diabetic myocardium without changes in circulating T3 and T4. Accordingly, the expression of TH target genes related to cardiac contractility was altered; β-MHC and PKCα were significantly increased. TH (L-T4 and L-T3) administration prevented these changes and resulted in increased EF%, normal wall stress and increased systolic radial strain in all myocardial segments. Acute myocardial infarction in diabetic rats results in TH receptor down-regulation with important physiological consequences. TH treatment prevents this response and improves cardiac hemodynamics.  相似文献   

18.
Thyroid hormone (T(3)) regulates bone turnover and mineralization in adults and is essential for skeletal development. Surprisingly, we identified a phenotype of skeletal thyrotoxicosis in T(3) receptor beta(PV) (TRbeta(PV)) mice in which a targeted frameshift mutation in TRbeta results in resistance to thyroid hormone. To characterize mechanisms underlying thyroid hormone action in bone, we analyzed skeletal development in TRalpha1(PV) mice in which the same PV mutation was targeted to TRalpha1. In contrast to TRbeta(PV) mice, TRalpha1(PV) mutants exhibited skeletal hypothyroidism with delayed endochondral and intramembranous ossification, severe postnatal growth retardation, diminished trabecular bone mineralization, reduced cortical bone deposition, and delayed closure of the skull sutures. Skeletal hypothyroidism in TRalpha1(PV) mutants was accompanied by impaired GH receptor and IGF-I receptor expression and signaling in the growth plate, whereas GH receptor and IGF-I receptor expression and signaling were increased in TRbeta(PV) mice. These data indicate that GH receptor and IGF-I receptor are physiological targets for T(3) action in bone in vivo. The divergent phenotypes observed in TRalpha1(PV) and TRbeta(PV) mice arise because the pituitary gland is a TRbeta-responsive tissue, whereas bone is TRalpha responsive. These studies provide a new understanding of the complex relationship between central and peripheral thyroid status.  相似文献   

19.
Thyroid hormone governs a diverse repertoire of physiological functions through receptors encoded in the receptor genes alpha and beta, which each generate variant proteins. In mammals, the alpha gene generates, in addition to the normal receptor TRalpha1, a non-hormone-binding variant TRalpha2 whose exact function is unclear. Here, we present the phenotype associated with the targeted ablation of TRalpha2 expression. Selective ablation of TRalpha2 resulted in an inevitable, concomitant overexpression of TRalpha1. Both TRalpha2 +/- and -/- mice show a complex phenotype with low levels of free T3 and free T4, and have inappropriately normal levels of TSH. The thyroid glands exhibit mild morphological signs of dysfunction and respond poorly to TSH, suggesting that the genetic changes affect the ability of the gland to release thyroid hormones. However, the phenotype of the mutant mice also has features of hyperthyroidism, including decreased body weight, elevated heart rate, and a raised body temperature. Furthermore, TRalpha2-/- and TRalpha2+/- mice are obese and exhibit skeletal alterations, associated with a late-onset growth retardation. The results thus suggest that the overexpression of TRalpha1 and the concomitant decrease in TRalpha2 expression lead to a mixed hyper- and hypothyroid phenotype, dependent on the tissue studied. The phenotypes suggest that the balance of TRalpha1:TRalpha2 expressed from the TRalpha gene provides an additional level of tuning the control of growth and homeostasis in mammalian species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号